Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions:

1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.
2. The test is of $\mathbf{3}$ hours duration and this Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
6. The CODE for this Booklet is DD. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No, anywhere else except in the specified space in the Test Booklet/Answer Sheet.
8. Use of white fluid for correction is not permissible on the Answer Sheet.
9. A carbon resistor of $(47 \pm 4.7) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
(1) Violet - Yellow - Orange - Silver
(2) Yellow - Violet - Orange - Silver
(3) Yellow - Green - Violet - Gold
(4) Green - Orange - Violet - Gold
10. A battery consists of a variable number ' n ' of identical cells (having internal resistance ' r ' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n ?

(2)

(4)

 P B
11. A set of ' n ' equal resistors, of value ' R ' each, are connected in series to a battery of emf ' E ' and internal resistance ' R '. The current drawn is I, Now, the ' n ' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I . The value of ' n ' is
(1) 10
(2) 11

$$
\begin{aligned}
& \text { es 101. The value of ' } n \text { ' is }, \frac{V}{V R}=1 \\
& \text { series: Req } n R \text { nR }
\end{aligned}
$$

$$
\text { series: } v=I_{s} n R=I_{n}^{n R}
$$

(3) 20
(4) 9
4. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E . The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of
fall of the proton is
(y) smaller
(2) 5 times greater
(3) 10 times greater
(4) equal
5. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{\circ} \mathrm{C}$ two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{\circ} \mathrm{C}$ is
(1) $330 \mathrm{~m} / \mathrm{s}$
(2) $339 \mathrm{~m} / \mathrm{s}$
(3) $350 \mathrm{~m} / \mathrm{s}$
(4) $300 \mathrm{~m} / \mathrm{s}$
6. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is $20 \mathrm{~m} / \mathrm{s}^{2}$ at a distance of 5 m from the mean position. The time period of oscillation is
(1) $2 \pi \mathrm{~s}$
(2) $\pi \mathrm{s}$
(3) 2 s
(4) 1 B

7. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is $F=2 x$
(1) independent of the distance between the $n=\frac{35}{3}$ plates.
(2) linearly proportional to the distance between the plates.
(3) proportional to the square root of the distance between the plates.
(4) inversely proportional to the distance between the plates.

ACHLADDDPage $2 \frac{V}{R}=I \quad V$ 促 SPACE FOR ROUGH WORK

$\frac{V n}{R}=10 I$
$\frac{V}{R}=\frac{10 I}{2 n}$

$\frac{V}{O R}=\Sigma \quad \frac{V}{O R} \quad \frac{V}{R} \quad D=$

8. An electron of mass m with an initial velocity $\vec{V}=V_{0} \hat{i}\left(V_{0}>0\right)$ enters an electric field $\overrightarrow{\mathrm{E}}=-\mathrm{E}_{0} \hat{\mathrm{i}} \quad\left(\mathrm{E}_{0}=\right.$ constant $\left.>0\right)$ at $\mathrm{t}=0$. If λ_{0} is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is
(1)

$$
\frac{\lambda_{0}}{\left(1+\frac{e E_{0}}{m V_{0}} t\right)}
$$

(2) $\lambda_{0}\left(1+\frac{e E_{0}}{m V_{0}} t\right)$
(3) $\lambda_{0} t$
(4) λ_{0}
9. When the light of frequency $2 v_{0}$ (where v_{0} is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_{1}. When the frequency of the incident radiation is increased to $5 y_{0}$, the maximum velocity of electrons emitted from the same plate is v_{2}. The ratio of v_{1} to v_{2} is $\quad h v=1 \mathrm{mv} v^{2} \frac{h \mathrm{c}}{\lambda}$ $\begin{array}{ll}\text { (1) } 1: 2 & H\left(v-v_{0}\right)\end{array} h v=\frac{1}{2} m v^{2} \lambda$
(3) $4: 1$

(4) $2: 1$

$$
\frac{1}{4}=\frac{v_{1}^{2}}{v_{2}^{2}} \frac{v_{1}}{v_{2}}=\frac{1}{v_{2}}
$$

10. For a radionctive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is

600

$600 \rightarrow 30$
(1) 20
(2) 10
(3) 30
(4) 15
11. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
(1) $1: 1$
(2) $1:-1$
(3) $2:-1$
(4) $1:-2$
12. In the circuit shown in the figure, the input voltage V_{i} is $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$ and $\mathrm{V}_{\mathrm{CE}}=0$. The values of $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and β are given by

(3) $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, B=250$
(4) $I_{B}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=125$

13. In the combination of the following gates the output Y can be written in terms of inputs A and B as

$\overline{A \cdot B}$
(2) $\mathrm{A} \cdot \overline{\mathrm{B}}+\overline{\mathrm{A}} \cdot \mathrm{B}$
(3) $\overline{\mathrm{A} \cdot \mathrm{B}}+\mathrm{A} \cdot \mathrm{B}$
(4) $\overline{\mathrm{A}+\mathrm{B}}$
14. In a $p-n$ junction diode, change in temperature due to heating
(1) affects only reverse resistance
(2) affects only forward resistance
(3) does not affect resistance of p-n junction
(4) affects the overall V - I characteristics of $\mathrm{p}-\mathrm{n}$ junction
15. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter $A B=D$. The height h is equal to

16. Three objects, A: (a solid sphere), B : (a) thin circular disk) and C: (a circular Ming), each have the same mass M and radius R. They all spin with the same angular speed is about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation

$$
\begin{aligned}
\text { (1) } W_{C}>W_{B}>W_{A} & M_{1} U_{1}+O=10+M_{2} v_{2} \\
\text { (2) } W_{A}>W_{B}>W_{C} & M_{1}=v_{2} V_{2} \\
\text { (3) } W_{B}>W_{A}>W_{C} & N_{1}=4 v_{1} v_{2} \\
\text { (4) } W_{A}>W_{C}>W_{B} & U_{1}=4 v_{2}
\end{aligned}
$$

17. A moving block having mass m, collides with another stationary block having mass 4 m . The lighter block comes to rest after collision. When the initial velocity of the lighter block is y, then the value of coefficient of restitution (e) will be
(1) 0.5
(2) 0.25
(3) $0-8$
(4) $0-4$
$e=\frac{v_{2}-v_{1}}{v_{1}-v_{2}}=\frac{}{-0}$

$$
e=\frac{v_{2}-0}{4 v_{2}-0}=\frac{v_{2}}{4 v_{2}}
$$

18. Which one of the following statements is incorrect?
(1) Rolling friction is smaller than sliding friction.
(2) Limiting value of static friction is directly proportional to normal reaction. $F_{\zeta}=\mu_{s} \mathrm{~N}$
(3) Frictional force opposes the relative motion. Coefficient of sliding friction has dimensions of length.
19. The moment of the force, $\overrightarrow{\mathrm{F}}=4 \hat{i}+5 \hat{j}-6 \hat{k}$ $(2,0,-3)$, about the point $(2,-2,-2)$, is given t
(1) $-8 \hat{i}-4 \hat{j}-7 \hat{k}$
(2) $-4 \hat{i}-\hat{j}-8 \hat{k}$
(3) $-7 \hat{i}-8 \hat{j}-4 \hat{k}$
(4) $-7 \hat{i}-4 \hat{j}-8 \hat{k}$
20. A toy car with charge q moves on a frictionle horizontal plane surface under the influence of uniform electric field $\overrightarrow{\mathrm{E}}$. Due to the force q] its velocity increases from 0 to $6 \mathrm{~m} / \mathrm{s}$ in o second duration. At that instant the direction the field is reversed. The car continues to mo for two more seconds under the influence of t] field. The average velocity and the average spe of the toy car between 0 to 3 seconds \approx respectively
(1) $2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s} \quad V=4+a+\quad 0=6+a x$
(2) $1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s} \quad 6=9 \times 3 \quad-6=9 \mathrm{kl}$
(3) $1 \mathrm{~m} / \mathrm{s}, 35 \mathrm{~m} / \mathrm{s} \quad a=6_{\text {vews }}=3+8=-27^{3 / 2}$
(4) $1.5 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s} \quad \mathrm{w} / \mathrm{g}=\frac{3+9}{3}=29$
21. A student measured the diameter of a small st bal using a screw gauge of least cor 0.001 cm . The main scale reading is 5 mm \& zero of circular scale division coincides w 25 divisions above the reference level. If scr gauge has a zero error of -0.004 cm , the corn diameter of the ball is
(1) 0.521 cm
$5=36=2 \times 6 \times 50=36$
(2) 0.525 cm
(3) $0.053 \mathrm{~cm}-36=2 \times 2 \times 5=\frac{36}{12}=3 \quad 36=$
(4) $0.529 \mathrm{~cm}-36=\frac{3}{4}=\frac{9}{4}$
22. A block of mass m is placed on a smooth inch wedge ABC of inclination θ as shown in figure. The wedge is given an acceleration towards the right. The relation between a an for the block to remain stationary on the we

(1)

$$
\mathrm{a}=\frac{\mathrm{g}}{\operatorname{cosec} \theta}
$$

(2) $a=\frac{g}{\sin \theta}$
(3) $a=g \cos \theta$
(4) $a=g \tan \theta$
23. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

(1) $\frac{2}{5}$
(2) $\frac{2}{3}$
(3)
$\frac{1}{8}$
(4) $\frac{2}{7}$
24. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm , the length of the open organ pipe is
(1) 13.2 cm
(2) 8 cm
(3) 12.5 cm
(4) 16 cm
25. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?
(Given :
Mass of oxygen molecule $(\mathrm{m})=2.76 \times 10^{-26} \mathrm{~kg}$
Boltzmann's constant $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$)
(1) $2.508 \times 10^{4} \mathrm{~K}$

$$
8.360 \times 10^{4} \mathrm{~K}
$$

$$
11.2 \times 10^{3}=\sqrt{\frac{3}{2} k_{b} \times T} \sqrt{\frac{3 R}{2} T^{4} k_{0}} \cdot r .
$$

(3) $5.016 \times 10^{4} \mathrm{~K}$
(4) $1.254 \times 10^{4} \mathrm{~K}$

$$
11.2 \times 10^{3} \times 11.2 \times 10^{3}=\frac{3}{2} \times \frac{8.3 \times 5}{32}
$$

26. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
$11.2 \times 11.2 \times 10^{6} \times 2 \times 32=T$.
(1) $26-8 \%$
(2) 20%
(3) 6.25%
(4) $12 \cdot 5 \%$

ACHLAIDD/Page 5

27. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence T , it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation ?
(1) Reflected light is polarised with its electric vector parallel to the plane of incidence Reflected light is polarised with its electric vector perpendicular to the plane of
(3) incidence
(4)
28. In Young's double slit experiment the separation d between the slits is 2 mm , the wavelength λ of the light used is $5896 \AA$ and distance D between the screen and slits is 100 cm . It is found that the angular width of the fringes is $0-20^{\circ}$. To increase the fringe angular width to $0.21^{=}$(with same λ and D) the separation between the slits needs to be changed to

29. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
(1) small focal length and large diameter
(2) large focal length and small diameter
(3) large focal length and large diameter
(4) small focal length and small diameter
30. An em wave is propagating in a medium with a velocity $\vec{V}=V \hat{\mathrm{i}}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
(2) $+z$ direction
(3) $-y$ direction
(4) -x direction
31. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
(1) 60°
(2) 45°
(3) 30°
(4) zero

32. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm . If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
(1) 30 cm away from the mirror $\frac{1}{f}=\frac{1}{v}+\frac{1}{v}$
(2) 36 cm away from the mirror
(3) 30 cm towards the mirror
(4) 36 cm towards the mirror $\frac{1}{15}=\frac{1}{v}+\frac{1}{40}$ $\frac{1}{v}=\frac{1}{15}-\frac{1}{40}=\frac{25}{600}$
33. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is 60 mA . This inductor is of inductance
(1) $0-138 \mathrm{H}$
(2) 138.88 H
(3) 1.389 H
(4) 18.89 H
$\frac{1}{2} \times 8 \times 1^{2} 4^{2}=25 \times 10^{-3}$
34. Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
$0.5 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction $0-25 \mathrm{~T}$ is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
(1) $7 \cdot 14 \mathrm{~A}$
(2) 5.98 A
(3) 14.76 A
20×10^{-3}
(4) $11 \cdot 32 \mathrm{~A}$
$20-0.1$

$$
\begin{aligned}
& 100 \times 10 \\
& 0.1 \times 10^{-3}
\end{aligned}
$$

36. An inductor $20 \mathrm{mH}_{, ~ a}$ capacitor $100 \mu \mathrm{~F}$ and a resistor 50Ω are connected in series across a source of emf, $V=10 \sin 314 \mathrm{t}$. The power loss in the circuit is
(1) 0.79 W
(2) 0.43 W
$z=\sqrt{2500+i}$
(3) 2.74 W
(4) $1 \cdot 13 \mathrm{~W}$ 24 between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
(1) the current source
(2) the magnetic field
(3) the lattice structure of the material of the rod
(4) the induced electric field due to the changing magnetic field

ACHLANDD/Page 6

$=$| SPACE FOR ROUGH WORK | |
| :---: | :---: |
| $\frac{59}{360 \%} \times 10^{3}$ | $\frac{5009}{369}$ |
| | 18 |
| | $\frac{13}{1250}$ |
| | $\frac{15}{70}$ |
| | $\frac{51}{6}$ |

38. A small sphere of radius ' r ' falls from rest in a viscous liquid. As a result, hert is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
(1) r^{3}
(2) r^{2}
(3) r^{5}
(4) r^{4}
39. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_{0} - If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_{0}$, the power radiated by it becomes $n P$. The value of n is
(1) $\frac{3}{4}$
(2) $\frac{4}{3}$
(3) $\frac{256}{81}$
(4) $\frac{81}{256}$
$15=4.11 \mathrm{ca}$
$x=5^{5}$ $15=4$.
40. A sample of 0.1 g of water at $100^{\circ} \mathrm{C}$ and normal pressure $\left(1.013 \times 10^{5} \mathrm{Nm}^{-2}\right)$ requires 54 cal of heat energy to convert to steam at $100^{\circ} \mathrm{C}$. If the volume of the steam produced is $167 \cdot 1 \mathrm{c} c$, the change in internal energy of the sample, is
(1) $104 \cdot 3 \mathrm{~J}$
25 he 2
党 $\times 100 \cdot \Delta u=9+\omega$
(2) 208.7 J
$\underset{\text { 感 }}{2}=54+\Delta n$
(3) 42.2 J
(4) 84.5 J
41. Two wires are made of the same material and have the same volume. The first wire has cross-sectionsi area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F , how much force is needed to stretch the second wire by the same amount ? $\Delta l_{1}=\frac{F_{1} \lambda_{1}}{A E} \Delta l_{2}=F_{2} \times l_{2}$ (1) $9 \mathrm{~F} \quad A_{1} l_{1}=A_{2} l_{2} \quad \frac{A}{A E} \quad \frac{l_{1}}{A_{1} E}$
(2) $6 \mathrm{~F} \quad A l_{1}=3 A l_{2}$
(3) $4 \mathrm{~F} \quad \frac{l_{1}}{h_{2}}=3$
(4) F
42. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
(1) Angular velocity
(2) Moment of inertia
(3) Rotational kinetic energy
(4) Angular momentum
43. The kinetic enerçies of a planet in an elliptical orbit about the Sun, at positions A, B and C are $\mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}}$ and K_{C}, respectively, AC is the major axis and $S B$ is perpendicular to $A C$ at the position of the Sun S as shown in the figure. Then $\lambda=b T A$
$\begin{array}{lll}\lambda_{1}=71 & 27 \\ \lambda_{2}=\frac{\lambda_{2}}{\lambda_{2}} & 27\end{array}$

(1) $\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{C}}$
(2) $K_{A}>K_{B}>K_{C}$
(3) $\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{C}}$
(4) $\mathrm{K}_{\mathrm{H}}>\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{C}}$
44. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetics energy $\left(\mathrm{K}_{\uparrow}\right)$ as well as rotational kinetic energy ${ }^{7}$ $\left(\mathrm{K}_{\mathrm{r}}\right)$ simultaneously. The ratio $\mathrm{K}_{\mathrm{t}}:\left(\mathrm{K}_{\mathrm{t}}+\mathrm{K}_{\mathrm{r}}\right)$ for the sphere is
45. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
(1) Raindrops will fall faster.

$$
g=\frac{C M}{R^{2}}
$$

(2) Walking on the ground would become more difficult.
(3) Time period of a simple pendulum on the $\frac{12}{5}$ Earth would decrease. $T \geqslant 2 \pi \sqrt{\frac{d}{g}}$. ' g ' on the Earth will not change.

$$
\begin{aligned}
& =\frac{\text { SPACE FOR ROUGH WORK }}{F_{1}} \times 3 \times 3 \\
& \Delta X_{i}=\frac{F^{2} 9}{F_{2}} F_{2}=g F
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{1}{2}\left(\frac{12}{7} M R^{2} w^{2}\right) & \frac{5+1}{7}+7 \\
\frac{12}{5} \times \frac{1}{7}=\frac{6}{2} M R^{2} \omega^{2} & \frac{12}{7}+7
\end{array}
$$

46. Which of the following is an amino acid derived hormone?
(1) Epinephrine
(2) Ecdysone
(3) Estradiol
(4) Estriol
47. Which of the following structures or regions is incorrectly paired with its function?

48. The transparent lens in the human eye is held in its place by
(1) ligaments attached to the ciliary body
(2) ligaments attached to the iris
(3) smooth muscles attached to the iris
(4) smooth muscles attached to the ciliary body
49. Which of the following hormones can play a significant role in osteoporosis ?
(1) Aldosterone and Prolactin
(2) Progesterone and Aldosterone
(91) Estrogen and Parathyroid hormone
(4) Parathyroid hormone and Prolactin
50. Ciliates differ from all other protozoans in
(1) using flagella for locomotion
(2) having a contractile vacuole for removing excess water
(3) using pseudopodia for eapturing prey
(4) having two types of nuclei
51. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system.
(1) Amphibia
(2) Reptilia
(2) Aves
(4) Osteichthyes
52. Which of the following organisms are known as chief producers in the oceans?
(1) Dinoflagellates
(2) Diatoms
(3) Cyanobacteria
(4) Euglenoids
53. Which one of these animals is not a homeotherm?
(1) Macropus
(i) Chelone
(3) Camelus
(4) Psittacula
54. Which of the following animals does not undergo metamorphosis ?
(1) Earthworm
(2) Tunicate.
(3) Moth
(4) Starfish
55. Which of the following features is used to identify a male cockroach from a female cockroach ?
(1) Presence of a boat shaped sternum on the $9^{\text {th }}$ abdominal segment
(2) Presence of caudal styles
(3) Forewings with darker tegmina
(4) Presence of anal cerci
56. Which one of the following population interactions is widely used in medical science for the production of antibiotics?
(1) Commensalism
(2) Mutualism
(3) Parasitism
(4) Amensalism
57. All of the following are included in 'Ex-situ conservation' except
(1) Wildlife safari parks
(2) Sacred groves
(3) Botanical gardens
(4) Seed banks
58. Match the items given in Column I with those in Column II and select the correct option given below :

59. In a growing population of a country,
(わ) pre-reproductive individuals are more than the reproductive individuals.
(2) reproductive individuals are less than the post-reproductive individuals.
(3) reproductive and pre-reproductive individuals are equal in number.
(4) pre-reproductive individuals are less than the reproductive individuals.
60. Which part of poppy plant is used to obtain the drug "Smack" ?
(1) Flowers
(2) Latex
(3) Roots
(4) Leaves
61. Hormones secreted by the placenta to maintain pregnancy are
(1) $\mathrm{hCG}, \mathrm{hPL}$, progestogens, prolactin
(2) hCG, hPL, estrogens, relaxin, oxytocin
(3) hCG, hPL, progestogens, estrogens
(4) hCG, progestogens, estrogens, glucocorticoids
62. The contraceptive 'SAHELI'
(1) blocks estrogen receptors in the uterus, preventing eggs from getting implanted.
(2) increases the concentration of eatrogen and prevents ovulation in females.
(3) is an IUD.
(4) is a post-coital contraceptive.
63. The amnion of mammalian embryo is derived from
(1) ectoderm and mesoderm
(2) endoderm and mesoderm
(3) mesoderm and trophoblast
(4) ectoderm and endoderm
64. The difference between spermiogenesis and spermiation is
1) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are
formed.
(2) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
(3) In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed.
In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from sertoli cells into the cavity of seminiferous tubules.
65. Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?
(1) Inflammation of bromchioles; Decreased respiratory surface
(2) Increased number of bronchioles; Increased respiratory surface
(3) Increased respiratory surface; Inflammation of bronchioles
(4) Decreased respiratory surface; Inflammation of bronchioles
66. Match the items given in Column I with those in Column II and select the correct option given below :

Column I

a. Tricuspid valve
b. Bieuspid valve
c. Semilunar valve iii. Between right
i. Between left atrium and left ventricie
ii. Between right ventricle and pulmonary artery atrium and right ventricle
a b
(1) iii i ii
(2) i iii ii
(3) i ii iii
(4) ii i iii
67. Match the items given in Column I with those in Column II and select the correct option given below :
a. Tidal volume

b. Inspiratory Reserve volume
c. Expiratory Reserve volume
d. Residual volume
iv. $1000-1100 \mathrm{~mL}$

	a	b	c	d
$\psi^{(2)}$	iii	ii	i	iv
$y^{(2)}$	iii	i	iv	ii
(3)	i	iv	ii	iii
(4)	iv	iii	ii	i

68. Match the items given in Column I with those in Column II and select the correct option given below:

Column I

a. Glycosuria
b. Gout

Column II
i. Accumulation of uric acid in joints
ii. Mass of crystallised salts within the kidney
iii. Inflammation in glomeruli
iv. Presence of glucose in urine

69. Match the items given in Column I with those in Column II and select the correct option given below ;

Column I Column II
 (Function)
 (Part of Excretory System)

a. Ultrafiltration
i. Henle's loop
b. Concentration of urine
Transport of urine
d. Storage of urine

iv. Malpighian $\begin{aligned} & \text { corpuscle }\end{aligned}$
v. Proximal convoluted tubule

	a	b	c	d
(1)	iv	v	ii	iii
(2)	iv	i	ii	iii
(3)	v	iv	i	ii
(4)	v	iv	i	iii

70. Which of the following events does not occur in rough endoplasmic reticulum?
(1) Protein folding
(2) Protein glycosylation
(3) Cleavage of signal peptide
(4) Phospholipid synthesis
71. Which of these statements is incorrect ?
(1) Enzymes of TCA cycle are present in mitochondrial matrix.
(2) Glycolysis occurs in cytosol.
(3) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
(4) Oxidative phosphorylation takes place in outer mitochondrial membrane.
72. Nissl bodies are mainly composed of
(1) Proteins and lipids
(2) DNA and RNA
(3) Nucleic acids and SER
(4) Free ribosomes and RER
73. Which of the following terms describe haman dentition?
(1) Thecodont, Diphyodont, Homodont
(2) Thecodont, Diphyodont, Heterodont
(3) Pleurodont, Monophyodont, Homodont
(4) Pleurodont, Diphyodont, Heterodont
74. Select the incorrect match :
(1) Lampbrush
chromosomes
(2) Allosomes - Sex chromosomes bivalents $\quad \square$.
(3) Submetacentric - L-shaped chromososmes chromosomes
(4) $\begin{aligned} & \text { Polytene } \\ & \text { chromosomes }\end{aligned} \quad$ - Oocytes of amphibians
75. Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as
(1) Polysome
(2) Polyhedral bodies
(3) Plastidome
(4) Nucleosome
76. All of the following are part of an operon except
(1) an operator
(2) structural genes
(8) an enhancer
(4) a promoter
77. Match the items given in Column I with those in Column II and select the correct option given below:

Column I

a. Proliferative Phase

Column II
i. Breakdown of endometrial lining ii. Follicular Phase iii. Luteal Phase
78. Aecording to Hugo de Vries, the mechanism of evolution is
(1) Multiple step mutations
(2) Saltation
(3) Phenotypic variations
(4) Minor mutations
79. A woman has an X -linked condition on one of her X chromosomes. This chromosome can be inherited by
(1) Only daughters
(2) Only sons
(3) Only grandchildren
(4) Both sons and daughters
80. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA ?
(1) AGGUAUCGCAU
(2) UGGTUTCGCAT
(3) ACCUAUGCGAU
(4) UCCAUAGCGUA
81. Which of the following gastrit cells indirectly help in erythropoiesis ?
(1) Chief cells
(2) Mucous cells
(3) Goblet cells
(4) Parietal cells
82. Match the items given in Column I with those in Column II and select the correct option given below :

Column I

a. Fibrinogen
b. Globulin
c. Albumin

Column II
i. Osmotic balance
ii. Blood clotting
iii. Defence mechanism
(1) iii
(2) i
(3) i
i iii
(4) ii
83. Which of the following is an occupational respiratory disorder ?
(1) Anthracis
(2) Silicosis
(3) Botulism
(4)
 contraction because it
(b) binds to troponin to remove the masking of active sites on actin for myosin.
(2) activates the myosin ATPase by binding to it.
(3) detaches the myosin head from the actin filament.
(4) prevents the formation of bonds between the myosin cross bridges and the actin filament.
85. Which of the following is not an autoimmune disease?
(1) Psoriasis
(2) Rheomatoid arthritis
(3) Alzheimer's disease
(4) Vitiligo
86. Among the following sets of examples for divergent evolution, select the incorrect option:
(1) Forelimbs of man, bat and cheetah
(2) Heart of bat, man and cheetah

Brain of bat, man and cheetah
(4) Eye of octopus, bat and man
87. Conversion of milk to curd improves its nutritional value by increasing the amount of
(1) Vitamin D
(2) Vitamin A
(は) Vitamin B_{12}
(4) Vitamin E
88. In which disease does mosquito transmitted pathogen cause chronic inflammation of Iymphatic vegsels?
(1). Elephantiasis
(2) Ascariasis
(3) Ringworm disease
(4) Amoebiasis
89. The similarity of bone structure in the forelimbs of many vertebrates is an example of
(1) Homology
(2) Analogy
(3) Convergent evolution
(4) Adaptive radiation
90. Which of the following characteristics represent Inheritance of blood groups' in humans ?
w. Pominance
b. Co-dominance
๒. Multiple allele
d. Incomplete dominance
e. Polygenic inheritance
(1) b, c and e
(2) a, b and c
(3) b, d and e
(4) a, c and e
91. Which of the following flowers only once in its life-time?
(15) Bamboo species
(2) Jackfruit
(3) Mango
(4) Papaya
92. Which of the following pairs is wrongly matched?
(1) Starch synthesis in pea
(2) ABO blood grouping
(3) XO typesex determination
(4) T.H. Morgan
98. In India, the oryanisation responsible for assessing the safety of introducing genetically modified organisms for public use is
(1) Indian Council of Medical Research (ICMR)
(2) Council for Scientific and Industrial Research (CSIR)
(3) Research Committee on Genetic Manipulation (RCGM)
(d) Genetic Engineering Appraisal Committee (GEAC)
99. Which of the following is commonly used as a yector for introducing a DNA fragment in human lymphocytes?
(a) Retrovirus
(2) Ti plasmid
(3) λ phage
(4) pBR 322
100. The correct order of steps in Polymerase Chain Reaction (PCR) is
(1) Extension, Denaturation, Annealing
(2) Annealing, Extension, Denaturation
(3) Denaturation, Extension, Annealing
(4) Denaturation, Annealing, Extension
101. A 'new' variety of rice was patented by a foreign company, though such yarieties have been present in India for a long time. This is related to
(1) $\mathrm{C} 0-667$
(2) SharbatiSonora
(3) Lerma Rojo
(4) Basmati
102. Select the correct match :

(1) Ribozyme	- Nucleic acid
(2) $\mathrm{F}_{2} \times$ Recessive parent	- Dihybrid cross
(3) T.H. Morgan	Transduction
(4) G. Mendel	- Transformation

103. Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its people is called
(1) Bio-infringement
(2) Biopiracy
(3) Biodegradation
(4) Bioexploitation
104. Natality refers to
(J) Death rate
(2) Birth rate
(3) Number of individuals leaving the habitat
(4) Number of individuals entering a habitat
105. Niche is
(1) all the biological factors in the organism's environment
(2) the physical space where an organism lives
(3) the range of temperature that the organism needs to live
(4) the functional role played by the organism
106. What type of ecological pyramid would be obtained with the following data ? Secondary consumer: 120 g Primary consumer : 60 g Primary producer: 10 g
(1) Inverted pyramid of biomass
(2) Pyramid of energy
(3) Upright pyramid of numbers
(4) Upright pyramid of biomass
107. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and release of molecular oxygen ?
(1) Carbon
(2) Cl
(3) Fe
(4) Oxygen
f08. World Ozone Day is celebrated on
(1) $5^{\text {th }}$ June $\&$
(2) $21^{\text {st }}$ April
(3) $16^{\text {th }}$ September
(4) $22^{\text {nd }}$ April
108. Which of the following is a secondary pollutant ?
(1) CO
(2) CO_{2}
(8) SO_{2}
(4) O_{3}
-1LA/DD/Page 14
109. The two functional groups characteristic of sugars are
(1) hydroxyl and methyl
(2) carbonyl and methyl
(3) carbonyl and phosphate
(4) carbonyl and hydroxyl
110. Which among the following is not a prokaryote? (1) Saccharomyces
(2) Mycobacterium
(8) Nostoc
(4) Oscillatoria
111. Stomatal movement is not affected by
(1) Temperature
(2) Light
(3) O_{2} concentration
(4) CO_{2} concentration
112. Which of the following is not a product of light reaction of photosynthesis?
(1) ATP
(2) NADH
(3) NADPH
(4) Oxygen
113. The Golgi complex participates in
(1) Fatty acid breakdown
(1) Formation of secretory vesicles
(3) Respiration in bacteria
(4) Activation of amino acid
114. Which of the following is true for nucleolus ?
(1) Larger nucleoli are present in dividing cells.
(2) It is a membrane-bound structure.
(3) It takes part in spindle formation.
(4) It is a site for active ribosomal RNA synthesis.
115. The stage during which separation of the paired homologous chromosomes begins is
(1) Pachytene
(2) Diplotene
(3) Diakinesis
(4) Zygotene
116. Stomata in grass leaf are
(1) Dumb-bell shaped
(2) Kidney shaped
(3) Rectangular
(4) Barrel shaped
117. Casparian strips occur in
(1) Epidermis
(2) Pericycle
(3) Cortex
(4) Endodermis
118. Plants having little or no secondary growth are

(k) Grasses

(2) Deciduous angiosperms
(3) Conifers
(4) Cycads
120. Pneumatophores occur in
(X) Halophytes
(2) Free-floating hydrophytes
(3) Carnivorous plants
(4) Submerged hydrophates
121. Sweet potato is a modified
(1) Stem
(2) Adventitious root
(3) Tap root
(4) Rhizome
122. Secondary xylem and phloem in dicot stem are produced by
(1) Apical meristems
(2) Vascular cambium
(8) Phellogen
(4) Axillary meristems
123. Which of the following statements is correct ?
(1) Ovules are not enclosed by ovary wall in gymnosperms.
(2) Selaginella is heterosporous, while Salvinia is homosporous.
(3) Horsetails are gymnosperms.
(4) Stems are usually unbranched in both Cycas and Cedrus.
124. Select the wrong statement:
(1) Cell wall is present in members of Fungi and Plantae.
(2) Mushrooms belong to Basidiomycetes.
(3) Pseudopodia are locomitory, and feeding structures in Sporozoans.
(4) Mitochondria are the powerhouse of the cell in all kingdoms except Monera.
125. Winged pollen grains are present in
(1) Mustard
(2) Cycas
(3) Mango
(4) Pinus
126. After karyogamy followed by meiosis, spores are produced exogenously in
(1) Neurospora
(2) Alternaria
(3) Agaricus
(4) Saccharomyces
127. Match the items given in Column I with those in Column II and select the correct option given below:

Column I
a. Herbarium i.

It is a place having a collection of preserved plants and animals.
b. Key
c. Museum
ii. A list that enumerates methodically all the species found in an area with brief description aiding identification.
iii. Is a place where dried and pressed plant specimens mounted on sheets are kept.
d. Catalogue -iv.

A booklet containing a list of characters and their alternates which are helpful in identification of various taxa.

	a	b	c	d
(1)	i	iv	iii	ii
(2)	iii	ii	i	iv
(3)	ii	iv	iii	i
(4)	iii	iv	i	ii

128. Which one is wrongly matched ?
(1) Uniflagellate gametes - Polysiphonia
(2) Biflagellate zoospores - Brown algae
(3) Gemma cups

- Marchantia
(4) Unicellular organism
- Chlorella

129. Which one of the following plants shows a yery close relationship with a species of moth, where none of the two can complete its life cycle without the other ?
(1) Hydrilla
(2) Yucca
(3) Banana
(4) Viola
130. Pollen grains can be stored for-several years in liquid nitrogen having a temperature of
(1) $-120^{\circ} \mathrm{C}$
(2) $-80^{\circ} \mathrm{C}$
(3) $-196^{\circ} \mathrm{C}$
(4) $-160^{\circ} \mathrm{C}$
131. Which of the following elements is responsible for maintaining turgor in cells ?
(1) Magnesium
(2) Sodium
(3) Potassium
(4) Calcium
132. Double fertilization is
(1) Fusion of two male gametes of a pollen tube with two different eggs
(2) Fusion of one male gamete with two polar nuclei
(3) Fusion of two male gametes with one egg
(4) Syngamy and triple fusion
133. Oxygen is not produced during photosynthesis by (1) Green sulphur bacteria
(2) Nostoc
(3) Cycas
(4) Chara
134. What is the role of NAD^{+}in cellular respiration?
(1) It functions as an enzyme.
(2) It functions as an electron carrier,
(3) It is a nucleotide source for ATP synthesis.
(4) It is the final electron acceptor for anaerobic respiration.
135. In which of the following forms is iron absorbed by plants?
(1) Ferric
(2) Ferrous
(3) Free element
(1) Both ferric and ferrous
136. Which of the following statements is not true for halogens ?
(1) All form monobasic oxyacids.
(2) All are oxidizing agents.

All but fluorine show positive oxidation states.
(4) Chlorine has the highest electron-gain enthalpy.
137. Considering Ellingham diagram, which of the following metals can be used to reduce alumina ?
(1) Fe
(2) Zn
(3) Mg
(4) Cu
138. In the atructure of ClF_{3}, the number of lone pairs of electrons on central atom ' Cl ' is
(1) one
(3) four
(4) three
139. The correct order of atomic radii in group 13 elements is
(1) $\mathrm{B}<\mathrm{Al}<$ In $<\mathrm{Ga}<$ TI
(2) $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<$ Tl
(3) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{Tl}<$ In
(4) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<$ In $<$ Tl
140. The correct order of N -compounds in its decreasing onder of oxidation states is
$\underset{-5-2}{\mathrm{HNO}_{2}} \mathrm{NO}_{2}, \mathrm{~N}_{2},-\mathrm{NH}_{4} \mathrm{Cl}$

(2) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
(3) $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
(4) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$
141. Which one of the following elements is unable to form MF_{6}^{3-} ion ?
(1) Ga
(2) Al
((3) B
(4) In
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONA} \rightarrow \mathrm{PO}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
142. The compound A on treatment with Na gives B , and with PCl_{5} gives $\mathrm{C} . \mathrm{B}$ and G reat together to give diethyl ether. A, B and C are in the order
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
143. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
(1) $\mathrm{CH}=\mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(3) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(4) CH_{4}
144. The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following reactions :

The product ' C ' is
(1) m-brombtoluene
(2) o-bromotoluene
(3) 3-bromo-2,4,6-trichlorotoluene
(4) p-bromotoluene
145. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity ?
(1) $\mathrm{N}_{2} \mathrm{O}_{5}$
(2) NO_{2}
(3) $\mathrm{N}_{2} \mathrm{O}$
(4) NO^{-}
146. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations :
$M^{\prime} \times 100=6-4=2$
a. $\quad 60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$ $M=0.2$
b. $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}_{M}=\frac{1}{100} \frac{1}{100}$
c $\quad 75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH} \quad \mathrm{ph}=-\operatorname{leg}$ bio
d. $100 \mathrm{~mL} \cdot \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH} \frac{10}{\mathrm{C}}+\mathrm{PH}=2$
pH of which one of them will be equal to $1 ?=75 \times 02=\underset{\sim}{2}$
$\begin{array}{ll}\text { (1) } \mathrm{b} \\ \text { (2) } \mathrm{a} \\ \text { (3) } \mathrm{d} \\ (-5) \mathrm{c}\end{array} \quad \begin{aligned} & 25 \times 00 \\ & 25-25 \\ & 150\end{aligned}=\frac{19}{100}$
147. On which of the following properties does the coagulating power of an ion depend ?
(1) The magnitude of the charge on the fon alone
(2) Size of the ion alone
2. $4.2 \times 10^{-3}=x$
(3) Both magnitude and sign of the charge on the ion $x=242 \times 10^{-3} x$)
(4) The sign of charge on the ion qlone ${ }^{2-33}$
$=\frac{242 \times 10^{-5}}{21}=1 \times 10^{-5}$
148. The solubility of BaSO_{4} in water is $2.42 \times 10^{-3} \mathrm{gL}^{-1}$ at 298 K . The value of its solubility product (K_{sp}) will be
(Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g} \mathrm{~mol}^{-1}$)

149. Given van der Waals constant for $\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and CO_{2} are respectively $4.17,0.244,1.36$ and 3.59 , which one of the following gases is most easily liquefied ?
(7) NH_{3}
(2) H_{2}
(3) O_{2}
(4) CO_{2}
150. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign tbe correct code

Column I
Column II
a. Co^{3+} i. $\sqrt{8}$ B.M.
b. Cr^{3+}
c. Fe^{3+}
d. Ni^{2+}

	a	b	c
(4)	iv	v	ii
(2)	i	ii	iii
(3)	iv	i	ii
(4)	iii	v	i

151. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
(1) tetranuclear
(2) mononuclear
(3) trinuclear
(4) dinuclear
152. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are 111.1 1 111111
(1) square planar geometry and diamagnetic
(2) tetrahedral geometry and diamagnetic
(3) square planar geometry and paramagnetic
(4) tetrahedral geometry and paramagnetic
153. Which one of the following ions exhibits $\mathrm{d}-\mathrm{d}$ transition and paramagnetism as well ?
(1)

(2) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(3) MnO_{4}^{-}
(4) MnO_{4}^{2-}
154. The type of isomerism shown by the complex $\left[\mathrm{CaCl}_{2}(\mathrm{en})_{2}\right]$ is .
(1) Geometrical isomerism
(2) Coordination isomerism
(3) Ionization isomerism
(4) Linkage isomerism 人
155. Identify the major products P, Q and R in the following sequence of reactions :

(2)

156. Which of the following molecules represents the order of hybridisation $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}$ from left to right atoms ?
(1) $\mathrm{HC}=\mathrm{C}-\mathrm{C}=\mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C}=\mathrm{CH}$
(3)
(4)

157. Which of the following carbocations is expected to be most stable?
(1)

(3)

(4)

158. Which of the following is correct with respect to $-I$ effect of the substituents ? ($\mathrm{R}=$ alkyl)
(1) $-\mathrm{NH}_{2}<-\mathrm{OR}<-\mathrm{F}$
(2) $-\mathrm{NR}_{2}<-\mathrm{OR}<-\mathrm{F}$
(3) $-\mathrm{NH}_{2}>-\mathrm{OR}>-\mathrm{F}$
(4) $-\mathrm{NR}_{2}>-\mathrm{OR}>-\mathrm{F}$
159. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 \mathrm{~s}^{2} 2 s^{2} 2 \mathrm{p}^{3}$, the simplest formula for this compound is $\varnothing \mathrm{N} \mathrm{M} \mathrm{Mg}_{\mathrm{L}}^{2+4} \mathrm{MA}_{3}^{3,4} \mathrm{~N}_{2}$
(1) $\mathrm{Mg}_{2} \mathrm{X}_{3}$

66
(2) MgX_{2}
(8) $\mathrm{Mg}_{2} \mathrm{X}$
(4) $\mathrm{Mg}_{3} \mathrm{X}_{2}$
161. Iron exhibits bc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fec structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is
(1) $\frac{\sqrt{3}}{\sqrt{2}}$
$\operatorname{dac}^{3}=\frac{N T M}{N \pi}$
(2) $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
$\frac{d_{1}}{d_{2}}=\frac{2}{4}$
$\frac{d_{1}}{d_{2}}=\frac{1}{2}$
(3)

$$
\frac{3 \sqrt{3}}{4 \sqrt{2}}
$$

(4) $\frac{1}{2}$
162. Which one is a wrong statement ?
(1) Total orbital angular momentum of electron in ' s ' orbital is equal to zero.
(2) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
(9) The electronic configuration of N atom is $1 s^{2} \quad 2 s^{2} \quad 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}$

(4) The value of m for $\mathrm{d}_{x} 2$ is zero.
163. Consider the following species :

$$
\mathrm{CN}^{+}, \mathrm{CN}^{-}, \mathrm{NO} \text { and } \mathrm{CN}
$$

Which one of these will have the highest bond order?
(1) NO 2.5
(2) ${ }^{6} \mathrm{CN}^{-3}$
(3) $6 \mathrm{CN}^{+}$
(4) 6 CN
164. In the reaction

the electrophile involved is
(1) dichloromethyl cation $(\underset{\mathrm{CHCl}}{2}$)
(2) formyl cation (${ }^{(} \mathrm{CHO}$)
(3) dichloromethyl anion $\left(\mathrm{CHCl}_{2}\right)$
(4) dichlorocarbene (: CCl_{2})
165. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
(1) formation of intramolecular H -bonding
(2) formation of carboxylate ion $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{Oh}$
(3) more extensive association of carboxylic acid via van der Waal force of attraction
(4) formation of intermolecular H -bonding
166. Compound $\mathrm{A}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.
A and Y are respectively
(1)

(2)

(3)

(4)

167. The correct difference between first- and second-order reactions is that
the rate of a first-order reaction does not depend on reactant concentrations, the rate of a second-order reaction does depend on reactant concentrations
(2) the half-life of a first-order reaction does not depend on $[\mathrm{A}]_{0}$ the half-life of a second-order reaction does depend on $[\mathrm{A}]_{0}$
(3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
168. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
(1) $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
(2) $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
(3) $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
(4) $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$
169. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

Then the species undergoing disproportionation is
(1) BrO_{3}^{-}
(2) BrO_{4}^{-}
(3) Br_{2}
(4) HBrO
170. In which case is the number of molecules of water maximum?
(1) 18 mL of water \sim
(2) 0.18 g of water $\rightarrow 0.01 \mathrm{~mol} \quad x=\frac{19 \pi 5 r i s)}{1602}$
(3) 0.00224 L of water vapours at 1 atm and
(4) $10^{-3} \mathrm{~mol}$ of water
171. Regarding cross-linked or network polymers, which of the following statements is incorrect?
(1) They contain covalent bonds between various linear polymer chains.
(2) They are formed from bi- and tri-functional monomers.
(3) Examples are bakelite and melamine.
(4) They contain strong covalent bonds in their polymer chains.
172. Nitration of aniline in strong acidic medium also gives m -nitroaniline because
(1) In spite of substituent nitro group always goes to only m-position.
(2) In electrophilic substitution reactions amino group is meta directive.
(3) In absence of substituents nitro group always goes to m -position.
(4) In acidic (strong) medium aniline is present as anilinium ion.
173. Which of the following oxides is most acidic in nature?
(1) MgO
(2) BeO
(3) BaO
(4) CaO
174. The difference between amylose and amylopectin is
(1) Amylopectin have $1 \rightarrow 4 \quad \alpha$-linkage and $1 \rightarrow 6$ linkage
(2) Amylose have $1 \rightarrow 4$ co-linkage and $1 \rightarrow 6 \beta$-linkage
(3) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \beta$-linkage
(4) Amylose is made up of glucose and galactose
t2O4hy coon
175. A mixture of $2 \cdot 3 \mathrm{~g}$ formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
(1) $1 \cdot 4$
(2) 3.0
(3) 2.8
(4) 44
176. For the redox reaction

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$ the correct coefficients of the reactants for the balanced equation are

	MnO_{4}^{-}	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	H^{+}
(1)	16	5	2
(2)	2	5	16
(3)	2	16	5
(4)	5	16	2

177. The correction factor 'a' to the ideal gas equation corresponds to
(1) density of the gas molecules
(2) volume of the gas molecules
(3) electric field present between the gas molecules
(4) forces of attraction between the gas molecules
178. Which one of the following conditions will favour maximum formation of the product in the reaction,
(f) Low temperature and high pressure
(2) Low temperature and low pressure
(3) High temperature and high pressure
(4) High temperature and low pressure
179. The bond dissociation energies of X_{2}, Y_{2} and $X Y$ are in the ratio of $1: 0.5: 1 . \Delta H$ for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be $X_{2} \rightarrow x+x \quad-1=20$ (1) $200 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad Y_{2} \rightarrow 4+4 \quad 0.5=10$
(2) $100 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \mathrm{CY} \rightarrow x-4 y \quad I=2 C$
(3) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\frac{1}{2} x_{2}+\frac{1}{2} y_{2} \rightarrow x y_{\frac{1}{2} \times 1}+\frac{1}{2} \times 2-
$$

$\stackrel{+00-1}{x+0,5 x-}$
180. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction $\quad t r_{2}=\frac{A_{0}-A_{t}}{k} \frac{x_{2}}{2}+\frac{0.5 x}{2}+-x$
(1) is halved
(2) is doubled
(3) is tripled
(4) remains unchanged
$=\frac{A_{0}-k_{5} A_{0}^{2}}{T_{0}^{2}} \frac{1-5 x}{2}-\frac{A_{0}}{2 x}+1 \cdot 5$
$1-5$

$$
\begin{aligned}
& \frac{t_{1}}{t_{2}}=\frac{1}{2} \\
& t_{2}=2 t_{1}
\end{aligned}
$$

