PAPER-III COMPUTER SCIENCE

Signature and Name of Invigilator

Signature and rame of mysgnator		
1. (Signature)	OMR Sheet No.:	
(Name)	(To be filled by the Candidate)	
2. (Signature)	Roll No.	
(Name)	(In figures as per admission card)	
	Roll No	
D 8 7 1 4	(In words)	
Time : 21/ hours	Maximum Marke : 15	

Number of Pages in this Booklet: 16

Instructions for the Candidates

- Write your roll number in the space provided on the top of this page.
- This paper consists of seventy five multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the OMR Sheet Number should be entered on this Test Booklet.
- Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the circle as indicated below on the correct response against each item.

Example: (A) (B) (D) where (C) is the correct response.

- Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the test question booklet and Original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are, however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There is no negative marks for incorrect answers.

Number of Questions in this Booklet : 75
परीक्षार्थियों के लिए निर्देश

- इस पुष्ठ के ऊपर <mark>निय</mark>त स्थान पर अपना रोल नम्बर लिखिए ।
- 2. इस प्रश्न-पत्र में प<mark>चहत्तर बहुविकल्पीय प्रश्न हैं ।</mark> 3. परीक्षा प्रारम्भ हो<mark>ने पर,</mark> प्रश्न-पुस्तिका आपको दे दी जायेगी । पहले
- पाँच मिनट आप<mark>को प्रश्</mark>न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है : (i) प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज
 - (i) प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज की सील को फाड़ लें । खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें ।
 - (ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं । दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात् किसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लोटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें । इसके लिए आपको पाँच मिनट दिये जायेंगे । उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा ।
 - (iii) इस जाँच के बाद OMR पत्रक की क्रम संख्या इस प्रश्न-पुस्तिका पर अंकित कर दें।
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (A), (B), (C) तथा (D) दिये गये हैं । आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है ।

उदाहरण : (A) (B) (B) (D) जबिक (C) सही उत्तर है ।

- 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं । यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा ।
- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें ।
- 7. कच्चा काम (Rough Work) इस प्रितका के अन्तिम पृष्ठ पर करें ।
- श. यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं ।
- 9. आपको परीक्षा समाप्त होने पर प्रश्न-पुस्तिका एवं मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें । हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं ।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें ।
- किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है ।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

D-87-14 P.T.O.

COMPUTER SCIENCE PAPER – III

Note: This paper contains **seventy five (75)** objective type questions of **two (2)** marks each. **All** questions are compulsory.

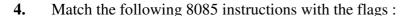
1.	A hierarchical memory system that uses cache memory has cache access time of 50 nano
	seconds, main memory access time of 300 nano seconds, 75% of memory requests are for
	read, hit ratio of 0.8 for read access and the write-through scheme is used. What will be
	the average access time of the system both for read and write requests?

(A) 157.5 n.sec.

(B) 110 n.sec.

(C) 75 n.sec.

(D) 82.5 n.sec.


2. For switching from a CPU user mode to the supervisor mode following type of interrupt is most appropriate

(A) Internal interrupts

- (B) External interrupts
- (C) Software interrupts
- (D) None of the above

3. In a dot matrix printer the time to print a character is 6 m.sec., time to space in between characters is 2 m.sec., and the number of characters in a line are 200. The printing speed of the dot matrix printer in characters per second and the time to print a character line are given by which of the following options?

- (A) 125 chars/second and 0.8 seconds
- (B) 250 chars/second and 0.6 seconds
- (C) 166 chars/second and 0.8 seconds
- (D) 250 chars/second and 0.4 seconds

List – I

List – II

- a. XCHG
- i. only carry flag is affected.
- b. SUB
- ii. no flags are affected.
- c. STC
- iii. all flags other than carry flag are affected.
- d. DCR
- iv. all flags are affected.

Codes:

- a b c d
- (A) iv i iii ii
- (B) iii ii i iv
- (C) ii iii i iv
- (D) ii iv i iii

Paper-III 2 D-87-14

5.	How	many times will the following loo LXI B, 0007 H	p be e	xecuted?
	LOP	: DCX B		6 0
		MOV A, B		
		ORA C		
		JNZ LOP		
	(A)	05	(B)	07
	(C)	09	(D)	00
6.	Spec	ify the contents of the accumulator	and t	he status of the S, Z and CY flags when 8085
	micr	<mark>oprocessor performs ad</mark> dit <mark>io</mark> n of 87	H and	d 79 H.
	(A)	11, 1, 1, 1	(B)	10, 0, 1, 0
	(C)	01, 1, 0, 0	(D)	00, 0, 1, 1
7.	Loca	tion transparency allows:	71	
	I.	Users to treat the data as if it is do		
	II.	Programmers to treat the data as i		
	III.	Managers to treat the data as if it		ne location.
		ch one of the following is correct?		
	(A)	I, II and III	(B)	I and II only
	(C)	II and III only	(D)	II only
0	33 71.:	ah af dha fallansin si a ann a 2		
8.		ch of the following is correct?	ia muat	a + 1 U
	I. II.	Two phase locking is an optimistic		
	III.	Two phase locking is pessimistic Time stamping is an optimistic pr		
	IV.	Time stamping is an optimistic prot		•
	(A)		ocoi.	
	(11)	Land III	(B)	II and IV
		I and III I and IV	(B)	II and IV II and III
	(C)	I and IV	(B) (D)	II and IV II and III
9.		I and IV	(D)	II and III
9.	(C)	I and IV rules used to limit the vol	(D)	
9.	(C)	I and IV rules used to limit the vol	(D)	II and III of log information that has to be handled and
9.	(C)	I and IV rules used to limit the volessed in the event of system failure	(D) ume o	II and III of log information that has to be handled and ving the loss of volatile information.
9.	(C) proce (A)	I and IV rules used to limit the vol essed in the event of system failure Write-ahead log	(D) ume of involve (B)	II and III of log information that has to be handled and wing the loss of volatile information. Check-pointing
9. 10.	(C) proce (A) (C)	I and IV rules used to limit the vol essed in the event of system failure Write-ahead log Log buffer	(D) ume of involving (B) (D)	II and III of log information that has to be handled and wing the loss of volatile information. Check-pointing
	proce (A) (C)	I and IV rules used to limit the vol essed in the event of system failure Write-ahead log Log buffer	(D) ume of involving (B) (D) with fu	II and III of log information that has to be handled and ving the loss of volatile information. Check-pointing Thomas $ F = \{A \to B, B \to C, \} $
	proce (A) (C)	rules used to limit the vol essed in the event of system failure Write-ahead log Log buffer R = ABCDE is a relational scheme v	(D) ume of involving (B) (D) with fu	II and III of log information that has to be handled and ving the loss of volatile information. Check-pointing Thomas $ F = \{A \to B, B \to C, \} $
	proce (A) (C) Let F AC -	rules used to limit the volumessed in the event of system failure Write-ahead log Log buffer R = ABCDE is a relational scheme volume of A are tribute closures of A are	(D) ume of involving (B) (D) with fund E and E	II and III of log information that has to be handled and ving the loss of volatile information. Check-pointing Thomas
10.	(C) proce (A) (C) Let F AC - (A) (C)	rules used to limit the voluessed in the event of system failure Write-ahead log Log buffer R = ABCDE is a relational scheme v → D}. The attribute closures of A a ABCD, ф	(D) ume of involving (B) (D) with fund E are (B) (D)	II and III of log information that has to be handled and ving the loss of volatile information. Check-pointing Thomas $ABCD, E$ ABCD, E ABC, E
	(C) proce (A) (C) Let F AC - (A) (C)	rules used to limit the voluessed in the event of system failure Write-ahead log Log buffer R = ABCDE is a relational scheme v → D}. The attribute closures of A a ABCD, ф	(D) ume of involving (B) (D) with fur and E are (B)	II and III of log information that has to be handled and ving the loss of volatile information. Check-pointing Thomas

	I.	Re-construction operation used in mixed fragmentation satisfies commutative rule.
	II.	Re-construction operation used in vertical fragmentation satisfies commutative rule
	Whi	ch of the following is correct?
	(A)	I
	(B)	П
	(C)	Both are correct
	(D)	None of the statements are correct.
12.	Whi	ch of the following is false?
	(A)	Every binary relation is never be in BCNF.
	(B)	Every BCNF relation is in 3NF.
	(C)	1 NF, 2 NF, 3 NF and BCNF are based on functional dependencies.
	(D)	Multivalued Dependency (MVD) is a special case of Join Dependency (JD).
13.	Whi	ch of the following categories of languages do not refer to animation languages?
	(A)	Graphical languages (B) General-purpose languages
	(C)	Linear-list notations (D) None of the above
14.	Mato	ch the following:
		List – I
	a. T	Cablet, Joystick i. Continuous devices
	b. L	eight Pen, Touch Screen ii. Direct devices
	c. L	Locator, Keyboard iii. Logical devices
	d. I	Data Globe, Sonic Pen iv. 3D interaction devices
	Cod	es:
	1	
	(A)	a b c d iv iii PBANCOM
	(B)	i iv iii ii
	(C)	i ii iii iv
	(D)	iv iii ii i
15.	A tec	chnique used to approximate halftones without reducing spatial resolution is known as
		,
	(A)	Halftoning (B) Dithering
	(C)	Error diffusion (D) None of the above

4

D-87-14

11. Consider the following statements:

Paper-III

16. Consider a triangle represented by A(0, 0), B(1, 1), C(5, 2). The triangle is rotated by 45 degrees about a point P(-1, -1). The co-ordinates of the new triangle obtained after rotation shall be

(A) A'
$$\left(-1, \sqrt{2} - 1\right)$$
, B' $\left(-1, 2\sqrt{2} - 1\right)$, C' $\left(\frac{3}{2}\sqrt{2} - 1, \frac{9}{2}\sqrt{2} - 1\right)$

(B) A'
$$(\sqrt{2}-1,-1)$$
, B' $(2\sqrt{2}-1,-1)$, C' $(\frac{3}{2}\sqrt{2}-1,\frac{9}{2}\sqrt{2}-1)$

(C) A'
$$\left(-1, \sqrt{2} - 1\right)$$
, B' $\left(2\sqrt{2} - 1, -1\right)$, C' $\left(\frac{3}{2}\sqrt{2} - 1, \frac{9}{2}\sqrt{2} - 1\right)$

(D) A'
$$(-1, \sqrt{2} - 1)$$
, B' $(2\sqrt{2} - 1, -1)$, C' $(\frac{9}{2}\sqrt{2} - 1, \frac{3}{2}\sqrt{2} - 1)$

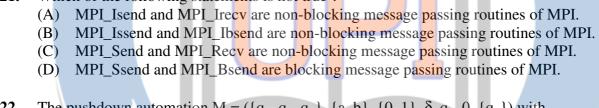
17. In Cyrus-Beck algorithm for line clipping the value of t parameter is computed by the relation:

(Here P₁ and P₂ are the two end points of the line, f is a point on the boundary, n₁ is inner normal)

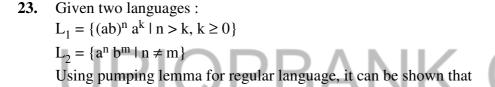
$$(A) \quad \frac{(P_1 - f_i) \cdot n_i}{(P_2 - P_1) \cdot n_i}$$

(B)
$$\frac{(f_i - P_1) \cdot n_i}{(P_2 - P_1) \cdot n_i}$$

(C)
$$\frac{(P_2 - f_i) \cdot n_i}{(P_1 - P_2) \cdot n_i}$$


(D)
$$\frac{(f_i - P_2) \cdot n_i}{(P_1 - P_2) \cdot n_i}$$

- **18.** Match the following:
 - a. Cavalier Projection
 - b. Cabinet Projection
 - o. Cubinet i rojection
 - c. Isometric Projection
 - d. Orthographic Projection


- i. The direction of projection is chosen so that there is no foreshortening of lines perpendicular to the *xy* plane.
- ii. The direction of projection is chosen so that lines perpendicular to the *xy* planes are foreshortened by half their lengths.
- iii. The direction of projection makes equal angles with all of the principal axis.
- iv. Projections are characterized by the fact that the direction of projection is perpendicular to the view plane.

Codes:

19.	• Consider the following statements S1, S2 and S3:			
	S1: In call-by-value, anything th	at is passed into a function call is unchanged in the		
	caller's scope when the functi	on returns.		
	S2: In call-by-reference, a functi	on receives implicit reference to a variable used as		
	argument.			
	S3: In call-by-reference, caller is	unable to see the modified variable used as argument.		
	(A) S3 and S2 are true.	(B) S3 and S1 are true.		
	(C) S2 and S1 are true.	(D) S1, S2, S3 are true.		
••				
20.	How many tokens will be generated	by the scanner for the following statement?		
	x = x * (a + b) - 5;			
	(A) 12	(B) 11		
	(C) 10	(D) 07		
21.	Which of the following statements i	s not true ?		

22. The pushdown automation
$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, 1\}, \delta, q_0, 0, \{q_0\})$$
 with $\delta(q_0, a, 0) = \{(q_1, 10)\}$ $\delta(q_1, a, 1) = \{(q_1, 11)\}$ $\delta(q_1, b, 1) = \{(q_2, \lambda)\}$ $\delta(q_2, b, 1) = \{(q_2, \lambda)\}$ $\delta(q_2, \lambda, 0) = \{(q_0, \lambda)\}$ Accepts the language (A) $L = \{a^n b^m \mid n, m \ge 0\}$ (B) $L = \{a^n b^n \mid n \ge 0\}$ (C) $L = \{a^n b^m \mid n, m > 0\}$ (D) $L = \{a^n b^n \mid n > 0\}$

(A) L₁ is regular and L₂ is not regular.
(B) L₁ is not regular and L₂ is regular.
(C) L₁ is regular and L₂ is regular.

(D) L_1 is not regular and L_2 is not regular.

24. Regular expression for the complement of language $L = \{a^n b^m \mid n \ge 4, m \le 3\}$ is (A) $(a + b)^* ba(a + b)^*$ (B) $a^* bbbbb^*$

(C) $(\lambda + a + aa + aaa)b^* + (a + b)^* ba(a + b)^*$

(D) None of the above

25.	For n devices in a network, mesh topology.	_ num	ber of duplex-mode links are required for a
	(A) n(n+1)	(B)	n(n-1)
	(C) $n(n+1)/2$	(D)	n(n-1)/2
26.	How many characters per second (7	bits + 1	1 parity) can be transmitted over a 3200 bps
	line if the transfer is asynchronous? (A		ng 1 start bit and 1 stop bit)
	(A) 300	(B)	320
	(C) 360	(D)	400
27.	Which of the following is not a field in	n TCP l	neader?
	(A) Sequence number	(B)	
	(C) Checksum	(D)	Window size
28.	What is the propagation time if the d	is <mark>tan</mark> ce	between the two points is 48,000? Assume
	the propagation speed to be 2.4×10^8	m <mark>etr</mark> e/s	econd in cable.
	(A) 0.5 ms	(B)	20 ms
	(C) 50 ms	(D)	200 ms
29.	is a bit-oriented proto	ocol fo	or communication over point-to-point and
	multipoint links.		
	(A) Stop-and-wait	(B)	HDLC
	(C) Sliding window	(D)	Go-back-N
30.	Which one of the following is true for	asvmm	netric-key cryptography ?
			public key is announced to the public.
			rivate key is announced to the public.
	(C) Both private key and public key		
	(D) Both private key and public key	are ann	nounced to the public.
31.	Any decision tree that sorts n elements	has he	eight
	(A) $\Omega(n)$	(B)	$\Omega(l\mathrm{gn})$
	(C) $\Omega(nlgn)$	(D)	
32.	Match the following:) A	
	List – I	List –	~
	a. Bucket sort i.	$O(n^3 lg)$	gn)
	b. Matrix chain multiplication ii.	$O(n^3)$	
	c. Huffman codes iii.	O(nlgi	n)
	d. All pairs shortest paths iv.	O(n)	
	Codes:		
	a b c d (A) iv ii i iii		
	(B) ii iv i iii		
	(C) iv ii iii i		
	(D) iii ii iv i		

33.	We can show that the clique problem is NP-hard by proving that
	(A) CLIQUE ≤ P 3-CNF_SAT(B) CLIQUE ≤ P VERTEX_COVER
	(C) CLIQUE ≤ P SUBSET_SUM
	(D) None of the above
34.	Dijkstra algorithm, which solves the single-source shortestpaths problem, is a, and the Floyd-Warshall algorithm, which finds shortest paths between all pairs of vertices, is a (A) Greedy algorithm, Divide-conquer algorithm
	(B) Divide-conquer algorithm, Greedy algorithm
	(C) Greedy algorithm, Dynamic programming algorithm
25	(D) Dynamic programming algorithm, Greedy algorithm
35.	Consider the problem of a chain $, A_2, A_3> of three matrices. Suppose that the$
	dimensions of the matrices are 10×100 , 100×5 and 5×50 respectively. There are two different ways of parenthesization: (i) $((A_1, A_2)A_3)$ and (ii) $(A_1, A_2)A_3$). Computing the
	product according to the first parenthesization is times faster in comparison to
	the second parenthesization.
	(A) 5 (C) 20 (B) 10 (D) 100
	(E) 100
36.	Suppose that we have numbers between 1 and 1000 in a binary search tree and we want to search for the number 365. Which of the following sequences could not be the sequence of nodes examined?
	(A) 4, 254, 403, 400, 332, 346, 399, 365 (B) 926, 222, 913, 246, 900, 260, 364, 365
	(C) 927, 204,913, 242, 914, 247, 365
	(D) 4, 401, 389, 221, 268, 384, 383, 280, 365
37.	Which methods are utilized to control the access to an object in multi-threaded programming?
	(A) Asynchronized methods (B) Synchronized methods
	(C) Serialized methods (D) None of the above
38.	How to express that some person keeps animals as pets?
	(A) Person O * Animal
	(B) Person pet O * Animal
	(C) Person O * Pet
	(D) Person $O*$ keep pet as \longrightarrow Animal
Pape	er-III 8 D-87-14

39.	Converting a primitive type data in called	to its corresponding wrapper class object instan	ce is
	(A) Boxing (C) Instantiation	(B) Wrapping(D) Autoboxing	
40.	The behaviour of the document elem (A) Using document object (B) Registering appropriate event h (C) Using element object (D) All of the above		
41.	(A) Stereotype is used for extendin(B) Stereotyped class must be abstract	g the UML language. Fact e U <mark>M</mark> L <mark>ele</mark> ment c <mark>an</mark> not be changed	
42.	Which method is called first by an ap (A) start() (C) init()	pplet program ? (B) run() (D) begin()	
43.	Which one of the following is not a s (A) Halstead metric (C) Complexity metric	ource code metric ? (B) Function point metric (D) Length metric	
44.	To compute function points (FP), the FP = Count - total × (0.65 + 0.01 factors (VAF) based on n questions. (A) 12 (C) 16	$\times \Sigma(F_i)$) where F_i (i = 1 to n) are value adjust	ment
45.	of risk in the following manner: Only 70 percent of the software compaphication and the remaining functions are usable components were planned.	ponents scheduled for reuse will be integrated integrated integrated integrated with average component size as 100 LOC DC as \$ 14, then the risk exposure would be (B) \$ 20,160 (D) \$ 15,120	to the
46.	Maximum possible value of reliabilit (A) 100 (C) 1	y is (B) 10 (D) 0	
47.	1	nents that can call, or pass control, to a component to component \mathbf{A}	nt A
D-87	27-14	9 Pape	er-III

Pape	er-III	10 D-87-14	
		•	
	(D)	It consists of the IPC primitives implemented as system calls to block the process when they are not allowed to enter critical region to save CPU time.	
	(C)	It uses two primitives, send and receive which are system calls rather than language constructs.	
	, ,	and signal operations.	
	(B)	variables, and data structures grouped together in a special package. It is a non-negative integer which apart from initialization can be acted upon by wait	
53.	Mon (A)	itor is an Interprocess Communication (IPC) technique which can be described as It is higher level synchronization primitive and is a collection of procedures,	
52	(C)	P1 P2 P3 (D) P1 P3 P2	
	(A)		
	P1 is	s allocated 6 tape drives, P2 is allocated 3 tape drives and P3 is allocated 2 tape drives.	
52.		operating system has 13 tape drives. There are three processes P1, P2 & P3. Maximum irement of P1 is 11 tape drives, P2 is 5 tape drives and P3 is 8 tape drives. Currently,	
	(C)	60 (D) 61	
	(A)	111 (B) 112	
		34, 9 and 12 in that order. The number of arm motions using shortest seek first rithm is	
51.		sider an imaginary disk with 40 cylinders. A request come to read a block on cylinder While the seek to cylinder 11 is in progress, new requests come in for cylinders 1, 36,	
	` /		
	(A) (C)	1024 blocks (B) 16794 blocks 20000 blocks (D) 1048576 blocks	
		ber is stored in 32 bits.	
50.		many disk blocks are required to keep list of free disk blocks in a 16 GB hard disk 1 kB block size using linked list of free disk blocks? Assume that the disk block	
		memory → cache → registers	
	(D)	Magnetic tapes → optical disks → magnetic disks → electronic disks → main	
	(C)	Magnetic tapes → electronic disks → magnetic disks → optical disks → main memory → cache → registers	
		memory \rightarrow cache \rightarrow registers	
	(B)	Magnetic tapes → magnetic disks → electronic disks → optical disks → main	

Various storage devices used by an operating system can be arranged as follows in

(A) Magnetic tapes → magnetic disks → optical disks → electronic disks → main

Temporal cohesion means

(A) Coincidental cohesion

(B) Cohesion between temporary variables(C) Cohesion between local variables(D) Cohesion with respect to time

increasing order of accessing speed:

48.

49.

54.	 In a distributed computing environment, distributed shared memory is used which is (A) Logical combination of virtual memories on the nodes. (B) Logical combination of physical memories on the nodes. (C) Logical combination of the secondary memories on all the nodes. (D) All of the above 	
55.	Equivalent logical expression for the Well Formed Formula (WFF), $\sim (\forall x) F[x]$ is	
	(A) $\forall x (\sim F[x])$ (B) $\sim (\exists x) F[x]$ (C) $\exists x (\sim F[x])$ (D) $\forall x F[x]$	
56.	 An A* algorithm is a heuristic search technique which (A) is like a depth-first search where most promising child is selected for expansion (B) generates all successor nodes and computes an estimate of distance (cost) from start node to a goal node through each of the successors. It then chooses the successor with shortest cost. 	
	(C) saves all path lengths (costs) from start node to all generated nodes and chooses shortest path for further expansion.(D) none of the above	
57.	The resolvent of the set of clauses $(A \lor B, \sim A \lor D, C \lor \sim B)$ is $(A) A \lor B \qquad (B) C \lor D$ $(C) A \lor C \qquad (D) A \lor D$	
58.	Match the following: a. Script i. Directed graph with labelled nodes for graphical representation of knowledge	
	b. Conceptual Dependencies ii. Knowledge about objects and events is stored in record-like structures consisting of slots and slot values.	
	c. Frames iii. Primitive concepts and rules to represent natural language statements d. Associative Network iv. Frame like structures used to represent stereotypical patterns for commonly occurring events in terms of actors, roles, props and scenes	
	Codes: a b c d (A) iv ii i iiii (B) iv iii ii i (C) ii iii iv i (D) i iii iv ii	

59.	Match the	following	components of	an exp	ert system :
	1.10000	10110 11115	TOTTIP CITTURE CI		

- a. I/O interface
- i. Accepts user's queries and responds to question through I/O interface
- b. Explanation module
- ii. Contains facts and rules about the domain
- c. Inference engine
- iii. Gives the user, the ability to follow inferencing steps at any time during consultation
- d. Knowledge base
- iv. Permits the user to communicate with the system in a natural way

Codes:

- a b c d
- (A) i iii iv ii
- (B) iv iii i ii
- (C) i iii ii iv
- (D) iv i iii ii

60. A computer based information system is needed:

- I. as it is difficult for administrative staff to process data.
- II. due to rapid growth of information and communication technology.
- III. due to growing size of organizations which need to process large volume of data.
- IV. as timely and accurate decisions are to be taken.

Which of the above statement(s) is/are true?

- (A) I and II
- (B) III and IV
- (C) II and III
- (D) II and IV

QPBANK.COM

- **61.** Given the recursively enumerable language (L_{RE}) , the context sensitive language (L_{CS}) , the recursive language (L_{REC}) , the context free language (L_{CF}) and deterministic context free language (L_{DCF}) . The relationship between these families is given by
 - $(A) \quad L_{CF} \subseteq L_{DCF} \subseteq L_{CS} \subseteq L_{RE} \subseteq L_{REC}$
 - (B) $L_{CF} \subseteq L_{DCF} \subseteq L_{CS} \subseteq L_{REC} \subseteq L_{RE}$
 - (C) $L_{DCF} \subseteq L_{CF} \subseteq L_{CS} \subseteq L_{RE} \subseteq L_{REC}$
 - (D) $L_{DCF} \subseteq L_{CF} \subseteq L_{CS} \subseteq L_{REC} \subseteq L_{RE}$

List - II

- Context free grammar
- i. Linear bounded automaton
- b. Regular grammar
- ii. Pushdown automaton
- c. Context sensitive grammar
- iii. Turing machine
- d. Unrestricted grammar
- iv. Deterministic finite automaton

Codes:

- (A) ii iv iii i
- i (B) iii ii iv
- iii (C) iv i ii
- (D) i iii ii iv

63. According to pumping lemma for context free languages:

Let L be an infinite context free language, then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as w = u v x y z

- (A) with $|vxy| \le m$ such that $uv^i xy^i z \in L$ for all i = 0, 1, 2
- (B) with $|vxy| \le m$, and $|vy| \ge 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$
- (C) with $|vxy| \ge m$, and $|vy| \le 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \dots$
- (D) with $|vxy| \ge m$, and $|vy| \ge 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$

Given two spatial masks 64.

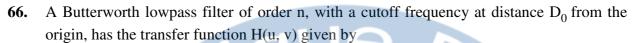
$$S_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } S_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

The Laplacian of an image at all points (x, y) can be implemented by convolving the image with spatial mask. Which of the following can be used as the spatial mask?

(A) only S_1

(B) only S₂

Both S_1 and S_2


(D) None of these

Given a simple image of size 10×10 whose histogram models the symbol probabilities **65.** and is given by

p ₁	p_2	p_3	p_4
a	b	c	d

The first order estimate of image entropy is maximum when

- (A) a = 0, b = 0, c = 0, d = 1
- (B) $a = \frac{1}{2}$, $b = \frac{1}{2}$, c = 0, d = 0
- (C) $a = \frac{1}{3}, b = \frac{1}{3}, c = \frac{1}{3}, d = 0$ (D) $a = \frac{1}{4}, b = \frac{1}{4}, c = \frac{1}{4}, d = \frac{1}{4}$

(A)
$$\frac{1}{1 + \left[\frac{D(u, v)}{D_0}\right]^{2n}}$$

(B)
$$\frac{1}{1 + \left[\frac{D(u, v)}{D_0}\right]^n}$$

(C)
$$\frac{1}{1 + \left[\frac{D_0}{D(u, v)}\right]^{2n}}$$

(D)
$$\frac{1}{1 + \left[\frac{D_0}{D(u, v)}\right]^n}$$

- 67. If an artificial variable is present in the 'basic variable' column of optimal simplex table, then the solution is
 - (A) Optimum

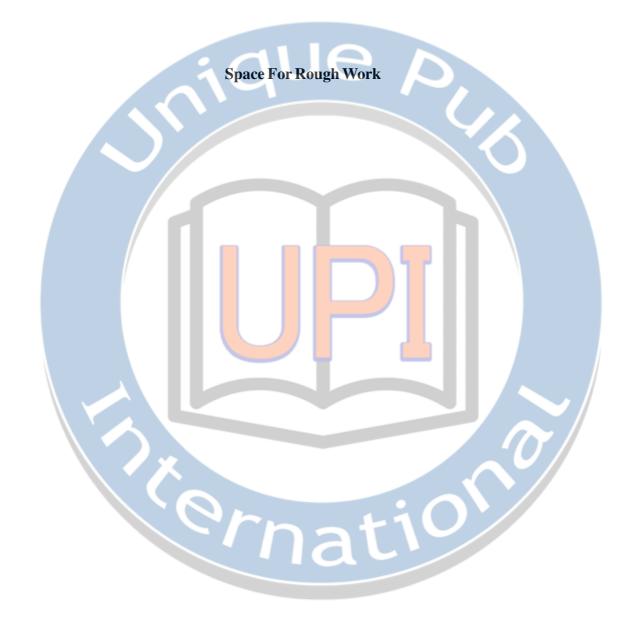
(B) Infeasible

(C) Unbounded

- (D) Degenerate
- 68. The occurrence of degeneracy while solving a transportation problem means that
 - (A) total supply equals total demand
 - (B) total supply does not equal total demand
 - (C) the solution so obtained is not feasible
 - (D) none of these
- **69.** Five men are available to do five different jobs. From past records, the time (in hours) that each man takes to do each job is known and is given in the following table:

				Jobs		
		I	II	III	IV	V
	P	2	9	2	7	1
	Q	6	8	7	6	1
Men	R	4	6	5	3	1
	S	4	2	7	3	1
	T	5	3	9	5	_1

Find out the minimum time required to complete all the jobs.


(A) 5

(B) 11

(C) 13

- (D) 15
- **70.** Consider the following statements about a perception :
 - I. Feature detector can be any function of the input parameters.
 - II. Learning procedure only adjusts the connection weights to the output layer. Identify the correct statement out of the following:
 - (A) I is false and II is false.
- (B) I is true and II is false.
- (C) I is false and II is true.
- (D) I is true and II is true.

71.	A point of a fuzzy set A is a point $x \in X$ at which $\mu_A(x) = 0.5$						
	(A) core	(B)	support				
	(C) crossover	(D)	α-cut				
72.		Match the following learning modes w.r.t. characteristics of available information for					
	learning:						
	a. Supervised i. Instructive information on desired responses,						
	explicitly specified by a teacher.						
			ormation for memory storing				
	c. Reinforcement iii. Partial information about desired responses, or only "right" or "wrong" evaluative information						
		d. Unsupervised iv. No information about desired responses					
	Codes:						
	a b c d	<i>4</i> 7 l					
	(A) i ii iii iv (B) i iii ii iv						
	(C) ii iv iii i						
	(D) ii iii iv i						
73.	Which of the following versions of	Windo	ws O.S. contain built-in partition manager				
	which allows us to shrink and expand pre-defined drives?						
	(A) Windows Vista	(B)	Windows 2000				
	(C) Windows NT	(D)	Windows 98				
- 4	A. T						
74.	A Trojan horse is						
	(A) A program that performs a legitimate function that is known to an operating system or its user and also has a hidden component that can be used for nefarious purposes						
	or its user and also has a hidden component that can be used for nefarious purposes like attacks on message security or impersonation.						
	(B) A piece of code that can attach itself to other programs in the system and spread to						
	other systems when programs are copied or transferred.						
	(C) A program that spreads to other computer systems by exploiting security holes like						
	weaknesses in facilities for creation of remote processes						
	(D) All of the above						
75.	Which of the following computing m	nodels i	is not an example of distributed computing				
15.	5. Which of the following computing models is not an example of distributed computing environment?						
	(A) Cloud computing	(B)	Parallel computing				
	(C) Cluster computing	(D)	Peer-to-peer computing				
	<u> </u>						
D-87-14		15	Paper-III				

UPIQPBANK.COM