PAPER-III COMPUTER SCIENCE & APPLICATIONS

Sig	gnature and Name of Invigilator		
1.	(Signature)	(OMR Sheet No.:
	(Name)		(To be filled by the Candidate)
2.	(Signature)	F	Roll No.
	(Name)		(In figures as per admission card)
_	(Ivanie)	R	Roll No.
•	T 8 7 1 6		(In words)
Tir	me : 2 ¹ / ₂ hours]		[Maximum Marks : 150
Nu	umber of Pages in this Booklet: 24		Number of Questions in this Booklet : 75
	Instructions for the Candidates		परीक्षार्थियों के लिए निर्देश
1.	Write your roll number in the space provided on the top of	1.	इस पृष्ठ के ऊपर <mark>निय</mark> त स्थान प <mark>र अप</mark> ना रोल नम्बर लिखिए ।
_	this page.	2. 3.	इस् प्रश्न-पत्र में प् <mark>चहत्त</mark> र बहुविकल्पीय प्रश्न हैं ।
2.	This paper consists of seventy five multiple-choice type of	3.	परीक्षा प्रारम्भ होन <mark>े पर,</mark> प्रश्नू-पुस्तिका आपको दे दी जायेगी । पहले
3.	questions. At the commencement of examination, the question booklet	4	पाँच मिन्ट आप <mark>को प्र्र</mark> न-पुस्तिक <mark>ा खोलने तथा उसकी निम्नूलि्खित</mark>
٥.	will be given to you. In the first 5 minutes, you are requested		जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :
	to open the booklet and compulsorily examine it as below:		(i) प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें । खुली हुई या बिना स्टीकर-सील की पुस्तिका
	(i) To have access to the Question Booklet, tear off the		स्वीकार न करें ।
	paper seal on the edge of this cover page. Do not accept		(ii) कवर पूछ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पूछ तथा
	a booklet without sticker-seal and do not accept an open booklet.		प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये परे
	(ii) Tally the number of pages and number of questions		हैं । द्येषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कूम हों या दुबारा आ
	in the booklet with the information printed on the		गये हों या सीरियल में न हाँ अर्थात किसी भी प्रकार की
	cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any		त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे
	other discrepancy should be got replaced immediately	1	लौटाकैर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें । इसके लिए आपको पाँच मिनट दिये जायेंगे । उसके बाद न
	by a correct booklet from the invigilator within the		तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको
	period of 5 minutes. Afterwards, neither the Question		अतिरिक्त् समय दिया जायेगा ।
	Booklet will be replaced nor any extra time will be given.		(iii) इस जॉच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित
	(iii) After this verification is over, the Test Booklet Number		े करें और OMR पत्रक का नं <mark>बर इस</mark> प्रश्न-पुस्तिका पर अंकित कर
	should be entered on the OMR Sheet and the OMR		<u>द</u> ।
	Sheet Number should be entered on this Test Booklet.	4.	प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये
4.	Each item has four alternative responses marked (1), (2), (3)		हैं । आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है :
	and (4). You have to darken the circle as indicated below on		
	the correct response against each item.		<u>उदाहरण : (1) (2)</u> (4)
	Example: (1) (2) (4)	_	जबिक (3) सही उत्तर है।
5	where (3) is the correct response. Your responses to the items are to be indicated in the OMR	5.	प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं । यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा
٥.	Sheet given inside the Booklet only. If you mark your	Λ	किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन
	response at any place other than in the circle in the OMR		नहीं होगा ।
	Sheet, it will not be evaluated.	6.	अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें ।
6	Read instructions given inside carefully.	7.	कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ट पर करें ।
	Rough Work is to be done in the end of this booklet.	8.	यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल
	If you write your Name, Roll Number, Phone Number or put	0.	नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो
٥.	any mark on any part of the OMR Sheet, except for the space	1	सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई
	allotted for the relevant entries, which may disclose your	1	अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये
	identity, or use abusive language or employ any other unfair	1	उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये
	means, such as change of response by scratching or using	1	अयोग्य घोषित किये जा सकते हैं ।
	white fluid, you will render yourself liable to disqualification.	9.	आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को

ही इस्तेमाल करें ।

प्रयोग वर्जित है ।

लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन

से बाहर न लेकर जायें । हालांकि आप परीक्षा समाप्ति पर मुल प्रश्न-पुस्तिका

तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं ।

10. केवल C.B.S.E. द्वारा प्रदान किये गये काले बाल प्वाईंट पेन का

11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का

12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

9. You have to return the Original OMR Sheet to the invigilators

at the end of the examination compulsorily and must not

carry it with you outside the Examination Hall. You are,

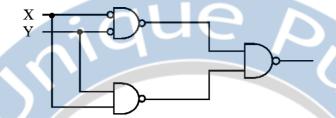
however, allowed to carry original question booklet and

duplicate copy of OMR Sheet on conclusion of examination.

10. Use only Black Ball point pen provided by C.B.S.E.

11. Use of any calculator or log table etc., is prohibited.

12. There is no negative marks for incorrect answers.


COMPUTER SCIENCE & APPLICATIONS

PAPER – III

Note: This paper contains seventy five (75) objective type questions of two (2) marks each. All questions are compulsory.

1.	A ripple counter is a (n):		
	(1) Synchronous Counter	(2) Asynchronous counter	
	(3) Parallel counter	(4) None of the above	
2.	8085 microprocessor hasb	: ALU.	
	(1) 32	(2) 16	
	(3) 8	(4) 4	
3.	The register that stores the bits re	quired to mask the interrupts is	
	(1) Status register	(2) Interrupt service register	
	(3) Interrupt mask register	(4) Interrupt request register	
4.	Which of the following in 8085	nicroprocessor performs	
	HL = HL + HL?		
	(1) DAD D (3) DAD B	(2) DAD H (4) DAD SP	MC
5.	_	operands are stored in the memory. The adds given in a register which is specified in the in	
	(1) Register direct	(2) Register indirect	
	(3) Base indexed	(4) Displacement	

6. The output of the following combinational circuit

is:

(1) X.Y

(2) X + Y

(3) $X \oplus Y$

(4) $X \oplus Y$

7. Which of the following statements is/are True regarding some advantages that an object-oriented DBMS (OODBMS) offers over a relational database?

- I. An OODBMS avoids the "impedance mismatch" problem.
- II. An OODBMS avoids the "phantom" problem.

III. An OODBMS provides higher performance concurrency control than most relational databases.

IV. An OODBMS provides faster access to individual data objects once they have been read from disk.

(1) II and III only

(2) I and IV only

(3) I, II, and III only

(4) I, III and IV only

8. The Global conceptual Schema in a distributed database contains information about global relations. The condition that all the data of the global relation must be mapped into the fragments, that is, it must not happen that a data item which belongs to a global relation does not belong to any fragment, is called:

- (1) Disjointness condition
- (2) Completeness condition
- (3) Reconstruction condition
- (4) Aggregation condition

9. Suppose database table T1(P, R) currently has tuples {(10, 5), (15, 8), (25, 6)} and table T2 (A, C) currently has {(10, 6), (25, 3), (10, 5)}. Consider the following three relational algebra queries RA1, RA2 and RA3:

RA1 : T1 $\bowtie_{\text{T1.P} = \text{T2.A}}$ T2 where \bowtie is natural join symbol

RA2: T1 \longrightarrow T1.P = T2.A T2 where \longrightarrow is left outer join symbol

RA3: T1 \longrightarrow T1.P = T2.A and T1.R = T2.C T2

The number of tuples in the resulting table of RA1, RA2 and RA3 are given by:

- (1) 2, 4, 2 respectively
- (2) 2, 3, 2 respectively
- (3) 3, 3, 1 respectively
- (4) 3, 4, 1 respectively

10. Consider the table R with attributes A, B and C. The functional dependencies that hold on R are: $A \rightarrow B$, $C \rightarrow AB$. Which of the following statements is/are True?

- I. The decomposition of R into R1(C, A) and R2(A, B) is lossless.
- II. The decomposition of R into R1(A, B) and R2(B, C) is lossy.
- (1) Only I

(2) Only II

(3) Both I and II

(4) Neither I nor II

11. Consider the following ORACLE relations:

One $(x, y) = \{ \langle 2, 5 \rangle, \langle 1, 6 \rangle, \langle 1, 6 \rangle, \langle 1, 6 \rangle, \langle 4, 8 \rangle, \langle 4, 8 \rangle \}$

Two $(x, y) = \{ \langle 2, 55 \rangle, \langle 1, 1 \rangle, \langle 4, 4 \rangle, \langle 1, 6 \rangle, \langle 4, 8 \rangle, \langle 4, 8 \rangle, \langle 9, 9 \rangle, \langle 1, 6 \rangle \}$

Consider the following two SQL queries SQ1 and SQ2:

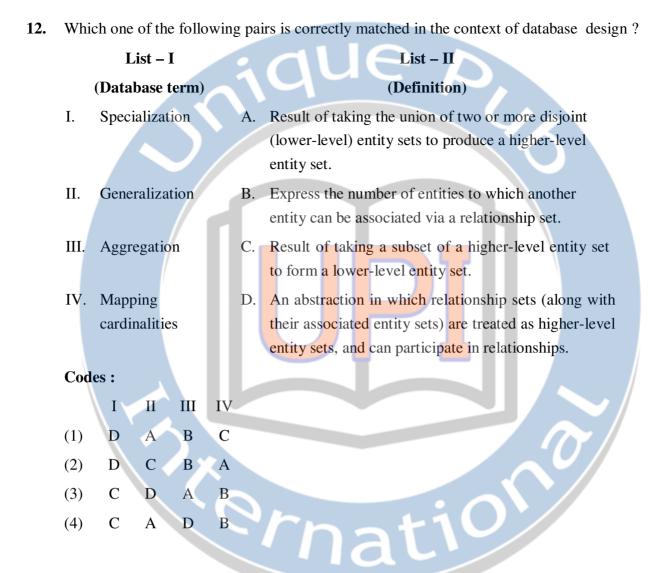
SQ1 : SELECT * FROM One)

EXCEPT

(SELECT * FROM Two);

SQ2 : SELECT * FROM One)

EXCEPT ALL

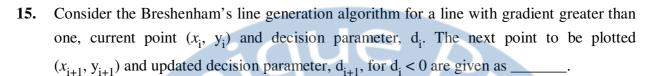

(SELECT * FROM Two);

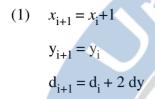
For each of the SQL queries, what is the cardinality (number of rows) of the result obtained when applied to the instances above ?

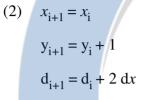
- (1) 2 and 1 respectively
- (2) 1 and 2 respectively

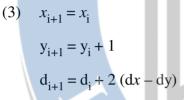
BANK.COM

- (3) 2 and 2 respectively
- (4) 1 and 1 respectively




- (1) 150 (3) 160 (2) 15 (4) 16
- **14.** Consider a N-bit plane frame buffer with W-bit wide lookup table with W > N. How many intensity levels are available at a time?
 - (1) 2^N


 $(2) \quad 2^{\mathbf{W}}$


 $(3) 2^{N+W}$

 $(4) 2^{N-1}$

(4)
$$x_{i+1} = x_i + 1$$

 $y_{i+1} = y_i + 1$
 $d_{i+1} = d_i + 2 (dy - dx)$

- **16.** A point P(2, 5) is rotated about a pivot point (1, 2) by 60°. What is the new transformed point P'?
 - (1) (1, 4)

(2) (-1, 4)

(3) (1, -4)

- (4) (-4, 1)
- 17. In perspective projection (from 3D to 2D), objects behind the centre of projection are projected upside down and backward onto the view-plane. This is known as _____.
 - (1) Topological distortion
 - (2) Vanishing point
 - (3) View confusion
 - (4) Perspective foreshortening

The Liang-Barsky line clipping algorithm uses the parametric equation of a line from 18. (x_1, y_1) to (x_2, y_2) along with its infinite extension which is given as:

$$x = x_1 + \Delta x.u$$

$$y = y_1 + \Delta y.u$$

Where $\Delta x = x_2 - x_1$, $\Delta y = y_2 - y_1$, and u is the parameter with $0 \le u \le 1$. A line AB with end points A(-1, 7) and B(11, 1) is to be clipped against a rectangular window with $x_{min} = 1$, $x_{max} = 9$, $y_{min} = 2$, and $y_{max} = 8$. The lower and upper bound values of the parameter u for the clipped line using Liang-Barsky algorithm is given as:

(1) $(0,\frac{2}{3})$

 $(3) \quad (0,\frac{1}{3})$

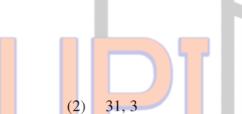
19. Match the following with reference to Functional programming history:

- Lambda calculus a.
- i. Church, 1932
- b. Lambda calculus as ii. Wordsworth, 1970 programming language
- Lazy evaluation iii. Haskel, 1990 c.
- Mecarthy, 1960 d. Type classes

Codes:

- a c d
- (1) iv iii ii
- (2)
- (3)
- (4)

BANK.COM


20. Aliasing in the context of programming languages refers to:

- (1) Multiple variables having the same location
- (2) Multiple variables having the same identifier
- Multiple variables having the same value (3)
- (4) Multiple use of same variable

Assume that the program 'P' is implementing parameter passing with 'call by reference'. 21. What will be printed by following print statements in P?

```
Program P()
   x = 10;
   y = 3;
   funb (y, x, x)
   print x;
   print y;
}
   funb (x, y, z)
     y = y + 4;
     z = x + y + z;
      10, 7
```

- (1)
- (3) 10, 3

31, 7

PBANK.COM

- The regular grammar for the language $L = \{a^n b^m \mid n + m \text{ is even}\}\$ is given by 22.
 - $(1) \quad S \to S_1 \mid S_2$ $S_1 \rightarrow a S_1 \mid A_1$ $A_1 \rightarrow b A_1 \mid \lambda$ $S_2 \rightarrow aaS_2 \mid A_2$ $A_2 \rightarrow b A_2 \mid \lambda$
 - $(2) \quad S \to S_1 \mid S_2$ $S_1 \rightarrow a S_1 \mid a A_1$ $S_2 \rightarrow aa S_2 \mid A_2$ $A_1 \rightarrow bA_1 \mid \lambda$ $A_2 \rightarrow bA_2 \mid \lambda$
 - $(3) \quad S \to S_1 \mid S_2$ $S_1 \rightarrow aaa S_1 | aA_1$ $S_2 \rightarrow aaS_2 \mid A_2$

$$A_1 \to bA_1 \mid \lambda$$
$$A_2 \to bA_2 \mid \lambda$$

$$\begin{aligned} (4) \quad & S \rightarrow S_1 \mid S_2 \\ & S_1 \rightarrow aa \ S_1 \mid A_1 \\ & S_2 \rightarrow aaS_2 \mid aA_2 \\ & A_1 \rightarrow bbA_1 \mid \lambda \\ & A_2 \rightarrow bbA_2 \mid b \end{aligned}$$

23	Let $\Sigma = \{$	la hl	and language L = {	aa hh}	Then	the complement of L is
40.		a, or		aa, oo i.	1 11011,	the complement of L is

(1)
$$\{\lambda, a, b, ab, ba\} \cup \{w \in \{a, b\}^* \mid |w| > 3\}$$

(2) {a, b, ab, ba}
$$\cup$$
 {w \in {a, b}* | |w| > 3}

(3)
$$\{w \in \{a, b\}^* \mid |w| > 3\} \cup \{a, b, ab, ba\}$$

(4)
$$\{\lambda, a, b, ab, ba\} \cup \{w \in \{a, b\}^* \mid |w| \ge 3\}$$

24. Consider the following identities for regular expressions :

(a)
$$(r + s)^* = (s + r)^*$$

(b)
$$(r^*)^* = r^*$$

(c)
$$(r*s*)* = (r+s)*$$

Which of the above identities are true?

(1) (a) and (b) only

(2) (b) and (c) only

(3) (c) and (a) only

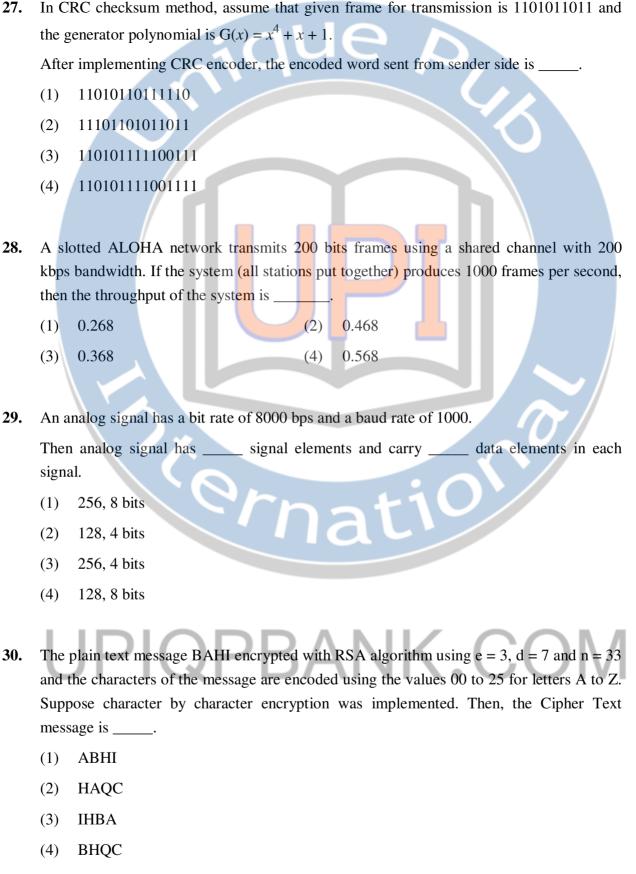
(4) (a), (b) and (c)

25. Suppose transmission rate of a channel is 32 kbps. If there are '8' routes from source to destination and each packet p contains 8000 bits. Total end to end delay in sending packet P is

(1) 2 sec

(2) 3 sec

(3) 4 sec


(4) 1 sec

26. Consider the following statements :

- A. High speed Ethernet works on optic fiber.
- B. A point to point protocol over Ethernet is a network protocol for encapsulating PPP frames inside Ethernet frames.
- C. High speed Ethernet does not work on optic fiber.
- D. A point to point protocol over Ethernet is a network protocol for encapsulating Ethernet frames inside PPP frames.

Which of the following is correct?

- (1) A and B are true; C and D are false.
- (2) A and B are false; C and D are true.
- (3) A, B, C and D are true.
- (4) A, B, C and D are false.

31.	Consider the problem of a chain $$ of four matrices. Suppose that the
	dimensions of the matrices A_1 , A_2 , A_3 and A_4 are 30×35 , 35×15 , 15×5 and 5×10
	respectively. The minimum number of scalar multiplications needed to compute the
	product $A_1A_2A_3A_4$ is
	(1) 14875 (2) 21000
	(3) 9375 (4) 11875
22	
32.	Consider a hash table of size $m = 10000$, and the hash function $h(K) = floor$ $(m(KA mod 1))$ for $A = (\sqrt{5} - 1)/2$. The key 123456 is mapped to location
	(1) 46
	(3) 43 (4) 48
33.	Consider a weighted complete graph G on the vertex set $\{v_1, v_2, \dots, v_n\}$ such that the
	weight of the edge (v_i, v_j) is $4 \mid i - j $. The weight of minimum cost spanning tree of G is:
	(1) $4n^2$ (2) n
	(1) $4n$ (2) n (3) $4n-4$ (4) $2n-2$
	, lac
34.	A priority queue is implemented as a max-heap. Initially, it has five elements. The level-
	order traversal of the heap is as follows:
	20, 18, 15, 13, 12
	Two new elements '10' and '17' are inserted in the heap in that order. The level-order
	traversal of the heap after the insertion of the element is:
	(1) 20, 18, 17, 15, 13, 12, 10
	(2) 20, 18, 17, 12, 13, 10, 15
	(3) 20, 18, 17, 10, 12, 13, 15

(4)

20, 18, 17, 13, 12, 10, 15

35.	If there are n integers to sort, each integer has d digits, and each digit is in the se	t
	{1, 2,, k}, radix sort can sort the numbers in:	

(1) O(k(n+d))

(2) O(d(n+k))

(3) O((n + k) 1 g d)

(4) O((n+d) lg k)

36. Match the following:

- a. Prim's algorithm
- i. $O(V^2E)$
- b. Bellman-Ford algorithm
- ii. O(VE lgV)
- c. Floyd-Warshall algorithm
- iii. O(E lgV)
- d. Johnson's algorithm
- iv. $O(V^3)$

Where V is the set of nodes and E is the set of edges in the graph.

Codes:

a b c d

- (1) i iii iv ii
- (2) i iii ii iv
- (3) iii i iv ii
- (4) iii i ii iv
- **37.** Constructors have _____ return type.
 - (1) void

- (2) char
- (3) int (4) no
- **38.** Method over-riding can be prevented by using final as a modifier at _____.
 - (1) the start of the class.
 - (2) the start of method declaration.
 - (3) the start of derived class.
 - (4) the start of the method declaration in the derived class.

	(1)	Composition is a strong type of association between two classes with full ownership.
	(2)	Composition is a strong type of association between two classes with partial ownership.
	(3)	Composition is a weak type of association between two classes with partial ownership.
	(4)	Composition is a weak type of association between two classes with strong ownership.
40.	Whi	ch of the following is not a correct statement?
	(1)	Every class containing abstract method must be declared abstract.
	(2)	Abstract class can directly be initiated with 'new' operator.
	(3)	Abstract class can be initiated.
	(4)	Abstract class does not contain any definition of implementation.
41.	Whi	ch of the following tag in HTML is used to surround information, such as signature of
		person who created the page ?
	(1)	<body> </body> (2) <address> </address>
	(3)	 (4)
42.	Java	uses threads to enable the entire environment to be
	(1)(3)	Symmetric (2) Asymmetric Synchronous (4) Asynchronous
43.	Betw the (Operating System (OS) crashes on the average once in 30 days, that is, the Mean Time veen Failures (MTBF) = 30 days. When this happens, it takes 10 minutes to recover OS, that is, the Mean Time To Repair (MTTR) = 10 minutes. The availability of the with these reliability figures is approximately:
	(1)	96.97% (2) 97.97%
	(3)	99.009% (4) 99.97%
J-87	-16	13 Paper-III

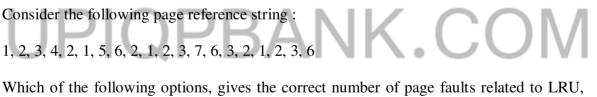
39. Which of the following is a correct statement?

44.	Match each software lifecycle model in List – I to its description in List – II :							
	List – I						4	List – II
	I.	Code	-and-	Fix	$ \vec{} $	10	a.	Assess risks at each step; do most critical action first.
	II.	Evolu	utiona	ary pro	ototyp	ing	b.	Build an initial small requirement specifications, code it, then "evolve" the specifications and code as needed.
	III.	Spira	.1		4		c.	Build initial requirement specification for several releases, then design-and-code in sequence
	IV.	Stage	ed De	livery			d.	Standard phases (requirements, design, code, test) in order
	V.	Wate	rfall				e.	Write some code, debug it, repeat (i.e. ad-hoc)
	Cod	es:						/ I
		I	II	III	IV	V		
	(1)	e	b	a	c	d		
	(2)	e	c	a	b	d		
	(3)	d	a	b	c	e		
	(4)	c	e	a	b	d		
		`						
45.	Mate	ch eacl	h soft	ware t	erm i	n List	– I to	its description in List – II:
		List -	- I					List – II
	I.	Wiza	rds				a.	Forms that provide structure for a document
	II.	Temp	olates				b.	A series of commands grouped into a single command
	III.	Macr				P	C.	A single program that incorporates most commonly used tools
	IV.	Integ			are		d.	Step-by-step guides in application software
	V.		vare S	suite			e.	Bundled group of software programs
	Cod		ΤΤ	111	13.7	1 7		
	(1)	I	II	III	IV	V		
	(1)	d b	a	b	c	e		
	(2)	b	a	d b	c	e		
	(3)	d	e	b	a	c		
Don	(4)	e	c	b	a	d		14 10716
rape	er-III							14 J-87-16

	(1)(3)	Both (I) and (II) are correct.	(4)	Both (I) and (II) are wrong.					
	(1)								
		Only (I) is correct.	(2)	Only (II) is correct.					
	Whi	ch of the following options is corr	ect with	reference to above statements?					
	II.	The user structure is swapped or paged out when its associated process is not in memory, in order not to waste memory on information that is not needed.							
	1.	processes, even those that are not currently in memory.							
49.	The Unix Operating System Kernel maintains two key data structures related to processes, the process table and the user structure. Now, consider the following two statements: I. The process table is resident all the time and contain information needed for all								
	(3)	I and IV	(4)	II and III					
	(1)	I and III	(2)	II and IV					
	IV.	A release is an instance of a functionally distinct from other		n, which is functionally identical but non- es of a system.					
	III.	A release is an instance of a system, which is distributed to users outside of the development team.							
	II.	A version is an instance of a s from other system instances.	system,	which is functionally distinct in some way					
	I.	A version is an instance of a functionally distinct from other		n, which is functionally identical but non-es of a system.					
40.				ement(s) about version and release?					
48.	W/bi	ah of the following is/are CORDE	CT at at	ement(s) shout version and release 2					
	(4)	Robustness, efficiency, reliabilit	y, <mark>m</mark> ain	tainability, reusability.					
	(3)	Portability, interoperability, mai	ntainab	ility, reusability.					
	(2)	Correctness, reliability, robustne	ess, effic	ciency, usability.					
	(1)	Maintainability, reusability, port	tability,	efficiency, correctness.					
47.	Whi	ch of the following are external qu	ualities	of a software product?					
	(3)	ISO 9002 : 2001	(4)	ISO 9003 : 2004					
	` ′	ISO 9000 : 2004	(2)						
	(1)	150 0000 • 2004	(2)	ISO 9001 : 2000					

46. The ISO quality assurance standard that applies to software Engineering is

50.	Consider a system which have 'n' number of processes and 'm' number of resource types.
	The time complexity of the safety algorithm, which checks whether a system is in safe
	state or not, is of the order of:


(1) O(mn)

 $O(m^2n^2)$ (2)

 $O(m^2n)$ (3)

 $O(mn^2)$ (4)

- 51. An operating system supports a paged virtual memory, using a central processor with a cycle time of one microsecond. It costs an additional one microsecond to access a page other than the current one. Pages have 1000 words, and the paging device is a drum that rotates at 3000 revolutions per minute and transfers one million words per second. Further, one percent of all instructions executed accessed a page other than the current page. The instruction that accessed another page, 80% accessed a page already in memory and when a new page was required, the replaced page was modified 50% of the time. What is the effective access time on this system, assuming that the system is running only one process and the processor is idle during drum transfers?
 - 30 microseconds (1)
 - (2) 34 microseconds
 - 60 microseconds (3)
 - 68 microseconds (4)
- Consider the following page reference string: 52.

Which of the following options, gives the correct number of page faults related to LRU, FIFO, and optimal page replacement algorithms respectively, assuming 05 page frames and all frames are initially empty?

(1) 10, 14, 8

8, 10, 7 (2)

(3) 7, 10, 8 (4) 7, 10, 7

information to be added is stored in	memor	ry), then how many disk I/O operations are					
required for indexed (single-level) allo	ocation	strategy?					
(1) 1	(2)	101					
(3) 27	(4)	0					
An experimental file server is up 75°	% of the	e time and down for 25% of the time due to					
at least 99% ?							
(1) 2	(2)	4					
		16					
Given the following two languages:							
$L_2 = \{uww^R v \mid u, v, w \in \{a, b\}^+, u \ge v \}$							
Which of the following is correct?							
(1) L_1 is regular language and L_2 is not regular language.							
		mai language.					
(3) Both L_1 and L_2 are regular lange	uages.						
(4) Both L_1 and L_2 are not regular 1	anguage	es.					
Given a Turing Machine	> A						
Given a Turing Machine $M = (\{q_0, q_1\}, \{0, 1\}, \{0, 1, B\}, \delta, B, \{q_1\})$							
	ed as						
$\delta(q_0, 0) = (q_0, 0, R)$							
$\delta(q_0, B) = (q_1, B, R)$							
The language L(M) accepted by Turir	ng mach	ine is given as:					
(1) 0* 1*	(2)	00*					
	the index block is already in memorinformation to be added is stored in required for indexed (single-level) allows. It is at least 99%? (1) 2 (3) 8 Given the following two languages: $L_1 = \{uww^Rv \mid u, v, w \in \{a, b\}^+\}$ $L_2 = \{uww^Rv \mid u, v, w \in \{a, b\}^+, u \ge 1$ Which of the following is correct? (1) L_1 is regular language and L_2 is: (2) L_1 is not regular language and L_2 is: (3) Both L_1 and L_2 are regular language. (4) Both L_1 and L_2 are not regular language. Given a Turing Machine $M = (\{q_0, q_1\}, \{0, 1\}, \{0, 1, B\}, \delta, B, Where \delta is a transition function defined \delta(q_0, 0) = (q_0, 0, R) \delta(q_0, B) = (q_1, B, R) The language L(M) accepted by Turing the store of the language L(M) accepted by Turing Machine L(M) and L(M) accepted by Turing Machine L(M) accepted b$	An experimental file server is up 75% of the bugs. How many times does this file server hat least 99%? (1) 2 (2) (3) 8 (4) Given the following two languages: $L_1 = \{uww^Rv \mid u, v, w \in \{a, b\}^+\}$ $L_2 = \{uww^Rv \mid u, v, w \in \{a, b\}^+, u \ge v \}$ Which of the following is correct? (1) L_1 is regular language and L_2 is not regular language and L_2 is regular language and L_2 is regular language. (3) Both L_1 and L_2 are regular languages. (4) Both L_1 and L_2 are not regular language. Given a Turing Machine $M = (\{q_0, q_1\}, \{0, 1\}, \{0, 1, B\}, \delta, B, \{q_1\})$ Where δ is a transition function defined as $\delta(q_0, 0) = (q_0, 0, R)$ $\delta(q_0, B) = (q_1, B, R)$ The language $L(M)$ accepted by Turing mach					

(4) 1*0*

(3) 10*

<i>5</i> 7.	Let $G = (V, T, S, P)$ be a context-free grammar such that every one of its productions is of
	the form $A \rightarrow v$, with $ v = k > 1$. The derivation tree for any string $W \in L(G)$ has a
	height such that

(1)
$$h < \frac{(|W| - 1)}{k - 1}$$

(2)
$$\log_k |W| \le h$$

(3)
$$\log_k |W| < h < \frac{(|W| - 1)}{k - 1}$$

$$(4) \quad \log_{k} |W| \le h \le \frac{(|W| - 1)}{k - 1}$$

- **58.** Which of the following is not used in standard JPEG image compression?
 - (1) Huffman coding

(2) Runlength encoding

(3) Zig-zag scan

(4) K-L Transform

- **59.** Which of the following is a source coding technique?
 - (1) Huffman coding

(2) Arithmetic coding

(3) Run-length coding

(4) DPCM

- **60.** If the histogram of an image is clustered towards origin on X-axis of a histogram plot then it indicates that the image is _____.
 - (1) Dark

(2) Good contrast

(3) Bright

(4) Very low contrast

BANK.COM

61. Consider the following linear programming problem :

Max.
$$z = 0.50 x_2 - 0.10x_1$$

Subject to the constraints

$$2x_1 + 5x_2 \le 80$$

$$x_1 + x_2 \le 20$$

and
$$x_1, x_2 \ge 0$$

The total maximum profit (z) for the above problem is:

(1) 6

(2) 8

(3) 10

(4) 12

	(a)	has a finite optimal solu		timal solution, then its dual (primal) problem					
	(b)	If primal (dual) problem has no feasible solution		nded optimum solution, then	its dual (primal)					
	(c)	(c) Both primal and dual problems may be infeasible.								
	Which of the following is correct?									
	(1)	(a) and (b) only	(2)	(a) and (c) only						
	(3)	(b) and (c) only	(4)	(a), (b) and (c)						
63.	Cons	sider the following statem	e <mark>nt</mark> s :							
	(a)	Assignment problem can	n <mark>be</mark> used to mir	nimize the cost.						
	(b)	Assignment problem is	a special case of	f transportation problem.						
	(c)	Assignment problem rec	quires that only	one activity be assigned to ea	ach resource.					
	Whi	ch of the following option	is is correct?		~/					
	(1)	(a) and (b) only	(2)	(a) and (c) only	0//					
	(3)	(b) and (c) only	(4)	(a), (b) and (c)						
			h	-+10%						
64.	Wha	at are the following sequen	nce of steps take	en in designing a fuzzy logic	machine?					
	(1)	Fuzzification \rightarrow Rule ev	valuation → Det	fuzzification						
	(2)	Fuzzification \rightarrow Defuzz	ification \rightarrow Rul	le evaluation						
	(3)	Rule evaluation \rightarrow Fuzz	$zification \rightarrow Det$	fuzzification						
	(4)	Rule evaluation → Defu	zzification \rightarrow F	Fuzzification	OM					
65.	Whi	ch of the following 2 inpu	t Boolean logic	functions is linearly insepara	able ?					
	(a)	AND	(b)	OR						
	(c)	NOR	(d)	XOR						
	(e)	NOT XOR								
	(1)	(a) and (b)	(2)	(b) and (c)						
	(3)	(c), (d) and (e)	(4)	(d) and (e)						
J-87	-16		19		Paper-III					

62. Consider the following statements:

$$R = \begin{bmatrix} y_1 & y_2 \\ 0.7 & 0.5 \\ x_2 & 0.8 & 0.4 \end{bmatrix}$$

and
$$S = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \begin{bmatrix} 0.9 & 0.6 & 0.2 \\ 0.1 & 0.7 & 0.5 \end{bmatrix}$$

Then, the resulting relation, T, which relates elements of universe of X to elements of universe of Z using max-product composition is given by

$$\mathbf{z}_1$$
 \mathbf{z}_2 \mathbf{z}_3

(1)
$$T = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0.68 & 0.89 & 0.39 \\ 0.76 & 0.72 & 0.32 \end{bmatrix}$$

$$z_1$$
 z_2 z_3

(2)
$$T = \begin{cases} x_1 \\ x_2 \end{cases} \begin{bmatrix} 0.68 & 0.89 & 0.39 \\ 0.72 & 0.76 & 0.32 \end{cases}$$

$$z_1$$
 z_2 z_3

(3)
$$T = \begin{cases} x_1 \\ x_2 \end{cases} \begin{bmatrix} 0.63 & 0.42 & 0.25 \\ 0.72 & 0.48 & 0.20 \end{cases}$$

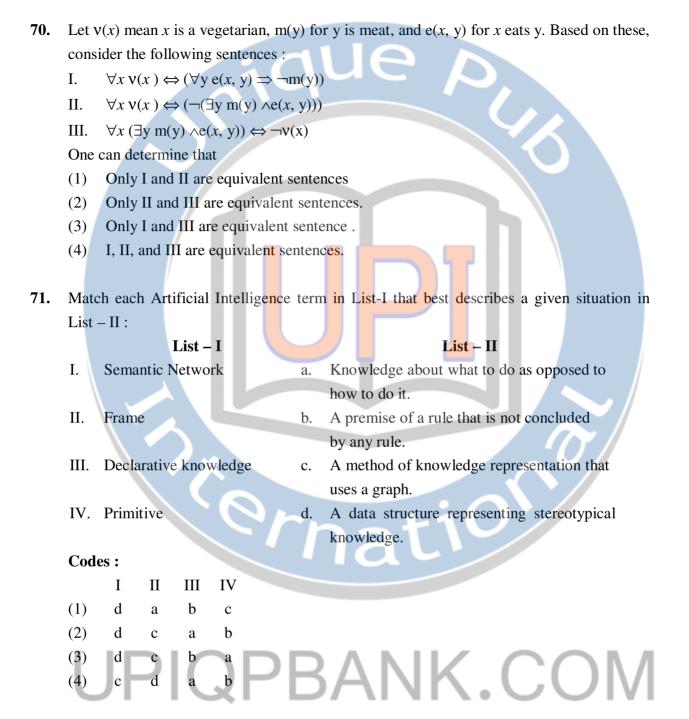
$$z_1$$
 z_2 z_3

(4)
$$T = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0.05 & 0.35 & 0.14 \\ 0.04 & 0.28 & 0.16 \end{bmatrix}$$

NK.COM

67. Consider the following operations to be performed in Unix :

"The pipe sorts all files in the current directory modified in the month of "June" by order of size and prints them to the terminal screen. The sort option skips ten fields then sorts the lines in numeric order."


Which of the following Unix command will perform above set of operations?

- (1) ls 1 l grep "June" l sort + 10n
- (2) ls 1 l grep "June" l sort + 10r
- (3) ls 1 | grep v "June" | sort + 10n
- (4) ls 1 l grep n "June" l sort + 10x
- **68.** Which of the following statements is incorrect for a Windows Multiple Document Interface (MDI)?
 - (1) Each document in an MDI application is displayed in a separate child window within the client area of the application's main window.
 - (2) An MDI application has three kinds of windows namely a frame window, an MDI client window and number of child windows.
 - (3) An MDI application can support more than one kind of document.
 - (4) An MDI application displays output in the client area of the frame window.
- 69. Which of the following statement(s) is/are True regarding 'nice' command of UNIX?
 - I. It is used to set or change the priority of a process.
 - II. A process's nice value can be set at the time of creation.
 - III. 'nice' takes a command line as an argument.
 - (1) I, II only

(2) II, III only

(3) I, II, III


(4) I, III only

72. In Artificial Intelligence, a semantic network

- (1) is a graph-based method of knowledge representation where nodes represent concepts and arcs represent relations between concepts.
- (2) is a graph-based method of knowledge representation where nodes represent relations between concepts and arcs represent concepts.
- (3) represents an entity as a set of slots and associated rules.
- (4) is a subset of first-order logic.

73.	Criti	icism free idea generation is a factor of
	(1)	Decision Support System
	(2)	Group Decision Support System
	(3)	Enterprise Resource Support System
	(4)	Artificial Intelligence
74.	Con	sider the following logical inferences:
	I ₁ :	If it is Sunday then school will not open.
		The school was open.
		Inference: It was not Sunday.
	I_2 :	If it is Sunday then school will not open.
	\	It was not Sunday.
		Inference: The school was open.
		Which of the following is correct?
	(1)	Both I ₁ and I ₂ are correct inferences.
	(2)	I ₁ is correct but I ₂ is not a correct inference.
	(3)	${\bf I}_1$ is not correct but ${\bf I}_2$ is a correct inference.
	(4)	Both I_1 and I_2 are not correct inferences.
75.	Whi	ch formal system provides the semantic foundation for Prolog?
	(1)	Predicate calculus
	(2)	Lambda calculus
	(3)	Hoare logic
	(4)	Propositional logic
J-87	-16	23 Paper-III

UPIQPBANK.COM