B.Tech III Year I Semester (R15) Regular Examinations November/December 2017

 DIGITAL CIRCUITS \& SYSTEMS(Electrical \& Electronics Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: (10×02=20 Marks)
(a) Convert (2468) $)_{10}$ to ($)_{16}$.
(b) Define prime implicant and essential prime implicants of a Boolean expression.
(c) List the applications of multiplexers.
(d) Design 2×4 decoder using NAND gates.
(e) Write the difference between counter and register.
(f) Draw and explain active low S-R latch.
(g) What is a PLD? What is the principal advantage of a PLD?
(h) Write the demerits of PROM.
(i) Define sequential circuits and active clock edge.
(j) Explain the use of algorithmic state machine.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) What is the difference between canonical form and standard form? Explain.
(b) Perform the subtraction using 1's complement and 2's complement methods.
(i) $11010-10000$.
(ii) $11010-1101$.

OR
3 Find the complement of the following Boolean functions and reduce them to minimum number of literals.
(i) $\left(b c^{1}+a^{1} d\right)\left(a b^{1}+c d^{1}\right)$.
(ii) $\left(b^{1} d+a^{1} b c^{1}+a c d+a^{1} b c\right)$.

4 (a) Reduce the following function using k-map technique.
$F(A, B, C, D)=\Pi(0,2,3,8,9,12,13,15)$.
(b) Minimize the expression using k-map.
$y=\left(A+B+C^{1}\right)(A+B+C)\left(A^{1}+B^{1}+C^{1}\right)\left(A^{1}+B+C\right)(A+B+C)$
5 Simply the following using tabulation method.
$\mathrm{y}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(1,2,3,5,9,12,14,15)+\mathrm{d}(4,8,11)$

> UNIT - III

6 (a) Design a type-D counter that goes through states $0,2,4,6,0$ \qquad The undesired states must always go to a 0 on the next clock pulse.
(b) Draw the schematic circuit of an edge-triggered JK flip flop using NAND gates and deduce its truth table.

OR

7 (a) Design and draw a full adder which will use two half adders.
(b) What are the different types of registers? Explain the serial input parallel output shift register.

Contd. in page 2

8 (a) Design a PAL for the following logical functions.
$Y_{1}=A B+A^{1} C B^{1}, Y_{2}=A B^{1} C+A B+A C^{1}, Y_{3}=A B+B C+C A$
(b) Discuss how PROM, EPROM and EEPROM technologies differ from each other. OR
9 (a) Implement the following multiple output functions using PROM.
$\mathrm{F}_{1}=\sum \mathrm{m}(0,1,4,7,12,14,15)$
$\mathrm{F}_{2}=\Sigma \mathrm{m}(1,3,6,9,12)$
$\mathrm{F}_{3}=\sum \mathrm{m}(2,3,7,8,10)$
$\mathrm{F}_{4}=\Sigma \mathrm{m}(1,3,5)$
(b) Implement $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,1,4,5,6,7,9,10,12,13,15)$ using PLA and explain its procedure.

Explain in detail the mealy state diagram with one example.
11 (a) Draw a state diagram of a sequence detector which can detect 110.
(b) Explain the state machine capabilities and limitations in detail.

