B.Tech III Year I Semester (R15) Regular Examinations November/December 2017 FLUID MECHANICS \& HYDRAULIC MACHINES

(Mechanical Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: (10×02=20 Marks)
(a) Give the expression for Total Pressure on vertical plane surface \& curved surface.
(b) What is the working principle of manometers?
(c) What are the assumptions of Bernoulli's theorem?
(d) Derive the expression for one dimensional continuity equation.
(e) What are the various causes of minor losses in pipes?
(f) Derive an expression for velocity of flow using Pitot tube.
(g) Define impact of jet.
(h) What is a draft tube?
(i) What is specific speed of a turbine and give its expression?
(j) Define NPSH.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

7 Write short notes on:
(a) Runoff river plants.
(b) Valley dam plants.
(c) Diversion canal plants.
(d) High head diversion plants.

UNIT - IV

9 (a) The following data were obtained from tests on pelton wheel:
(i) Head at the base of nozzle $=32 \mathrm{~m}$
(ii) Discharge of the nozzle $=0.18 \mathrm{~m}^{3} / \mathrm{s}$
(iii) Area of the jet $=7500 \mathrm{~mm}^{2}$
(iv) Power available at the shaft $=44 \mathrm{~kW}$
(v) Mechanical efficiency $=94 \%$.

Calculate the power lost in: (i) In the nozzle. (ii) In the runner. (iii) In mechanical function.
(b) A turbine develops 7460 kW under a head of 24.7 m at 135 rpm . What is the specific speed? What would be normal speed and output under a head of 19.5 m ?

UNIT - V
10 (a) Define specific speed of centrifugal pump. Derive an expression.
(b) Briefly explain the characteristics of centrifugal pumps.

OR

A centrifugal pump is required to deliver 280 liters of water per second against a head of 16 m . If the vanes of the impeller are radial at outlet and the velocity of flow is constant equal to $2 \mathrm{~m} / \mathrm{s}$, find the proportions of the pump. Assume $\eta_{\operatorname{man}}=80 \%$ and the ratio of breadth to diameter at outlet as 0.1 . $\left(K_{u}=1.6\right)$.
UPIQPBANK.COM

