Code: 15A04503

B.Tech III Year I Semester (R15) Regular Examinations November/December 2017

LINEAR INTEGRATED CIRCUITS & APPLICATIONS

(Common to ECE and EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) What is a voltage transfer curve of an Op-amp?
 - (b) List the electrical characteristics of an Ideal Op-amp.
 - (c) Give two reasons why open loop Op-amp is unsuitable for linear applications.
 - (d) Define break frequency & bandwidth.
 - (e) What determines the peak frequency fp in the peaking amplifier?
 - (f) Define a filter. How are filters classified?
 - (g) List the important characteristics of basic comparator.
 - (h) Define capture range, lock in range.
 - (i) List the various A/D Conversion techniques & identify the fastest ADC.
 - (j) Describe the various types of SPDT electronic switches used in D/A converter.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

- 2 (a) A dual input unbalanced-output differential amplifier has the following specification: $|V_{cc}| = 10 \text{ V}$, $|-V_{EE}| = 10 \text{ V}$, $R_{c1} = R_{c2} = 2.7 \text{ k}\Omega$, $R_{in} = 50 \Omega$ and $R_E = 3.9 \text{ k}\Omega$ and the transistor is CA3086 with $\beta_{ac} = \beta_{dc} = 100$ and $V_{BE} = 0.715 \text{ V}$. Calculate: (i) I_{CQ} and V_{CEQ} values. (ii) Voltage gain. (iii) Input and output resistances.
 - (b) Define current mirror circuit. Explain the working of current mirror circuit with necessary equations.

OF

- 3 (a) What is an Op-amp? Briefly explain each stages of a typical Op-amp.
 - (b) List and explain briefly open loop Op-amp configuration.

UNIT – II

- 4 (a) Derive an expression for closed loop voltage gain of an voltage series feedback amplifier for Ideal case.
 - (b) Design a compensating network for the LM307 Op-amp. The Op-amp uses ±10 V supply voltages.

OR

- 5 (a) Write the differences between Slew rate and Transient response.
 - (b) Write short notes on circuit stability.

UNIT - III

- 6 (a) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to about 1 KHz. If a sine wave of 1 V peak at 1000 Hz is applied to the differentiator of above part, draw its output waveforms.
 - (b) Derive an expression for inverting summing amplifier using three inputs.

OR

What is an instrumentation amplifier? With a neat circuit diagram, explain the working of instrumentation amplifier using Transducer bridge.

Contd. in page 2

R15

Code: 15A04503

UNIT - IV

- 8 (a) Explain the working of Wein bridge oscillator using Op-amp.
 - (b) For Schmitt trigger using Op-amp with $R_1 = 100 \ \Omega$, $R_2 = 56 \ k\Omega$, $V_{in} = 1 \ Vpp$ and supply = 15 V. Determine: (i) UTP. (ii) LTP.

OR

- 9 (a) Draw the functional diagram of 555 IC, for a stable operation and explain the working.
 - (b) Write a short notes on voltage controlled oscillator.

UNIT - V

- 10 (a) With a neat diagram, explain working of weighted resistor DAC.
 - (b) What output voltage would be produced by a DAC controller whose o/p range is 0 to 10 V and whose input binary number is: (i) 0110 (4 bit DAC). (ii) 10111100 (8 bit DAC).

OR

11 (a) Explain the working of ADC converter using successive approximation method.

Cerna

(b) A dual slope ADC uses a 16 bit counter and a 4 MHZ clock rate the maximum input voltage is +10 V. The maximum integration o/p voltage should be -8 V when the counter has cycled through 2n counts. The capacitor used in the integrator is 0.1μF. Find the value of the resistor R of the integrator.

UPIQPBANK.COM