Code: 15A04506

ique ,

B.Tech III Year I Semester (R15) Regular Examinations November/December 2017

MEMS & MICROSYSTEMS

(Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) What is micromachining?
 - (b) What is meant by Seebeck effect?
 - (c) List the limitations of doping selective etching.
 - (d) Mention the merits of surface micromachining.
 - (e) List the types of mechanical microsensors.
 - (f) What is meant by differential temperature technique?
 - (g) Define mass ratio of propulsion system.
 - (h) Define damping factor of second order system.
 - (i) List out the applications of carbon nanotubes.
 - (j) List the advantages of plastics.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Explain in detail about Silicon-Compatible material system.

OF

3 Discuss the effect of piezoresistivity and piezoelectricity.

UNIT – II

- 4 (a) Explain in detail about chemical vapor deposition and its applications.
 - (b) Explain the steps involved in lithography using lift-off technique.

OR

- 5 (a) Discuss about microstereolithography for MEMS.
 - (b) Write short notes on quartz micromachining.

UNIT – III

- 6 (a) Explain in detail about MEMS pressure sensors with neat diagrams.
 - (b) Write short notes on Bolometer detector.

OR

- 7 (a) Discuss the design aspects of flow sensor using the thin film anemometer.
 - (b) Explain the basic principle of micro-gyrometer.

UNIT - IV

- 8 (a) Explain the temperature drift in piezoresistive accelerometer.
 - (b) Write notes on micro machined tunneling accelerometer.

OR

9 Explain the basic principle and performance of capacitive accelerometer.

[UNIT - V]

- 10 (a) Discuss the features, issues and challenges of polymer MEMS.
 - (b) Explain the silicon fusion bonding mechanism.

OR

- 11 (a) Explain the role of interfacing electronics with integrated MEMS sensors.
 - (b) Write notes on Bio-MEMS.
