Code: 15A54101

B.Tech I Year I Semester (R15) Supplementary Examinations June 2018

MATHEMATICS – I

(Common to all branches)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

- Answer the following: $(10 \times 02 = 20 \text{ Marks})$ 1
 - Solve $[\cos x \tan y + \cos(x+y)]dx + [\sin x \sec^2 y + \cos(x+y)]dy = 0.$ (a)
 - Solve $(x+1)\frac{dy}{dx} y = e^x(x+1)^2$. (b)
 - Find the particular integral of $(D^2 + 4D + 4)y = \frac{e^{-2x}}{2}$. (c)
 - Solve $(x^2D^2 xD + 1)y = 0$. (d)
 - Find the radius of curvature for the curve y = 4sinx sin2x at $x = 90^{\circ}$. (e)
 - If $u = \frac{y^2}{x}$, $v = \frac{x^2}{y}$ find $\frac{\partial(u,v)}{\partial(x,y)} = ?$ Evaluate $\int_0^a \int_0^{\sqrt{ay}} xy \ dx \ dy$. Evaluate $\int_0^\pi \int_0^{a\cos\theta} r\sin\theta \ dr \ d\theta$. (f)
 - (g)
 - (h)
 - Find the unit vector normal to the surface $x^2 y^2 + z = 2$ at the point (1, -1, 2). (i)
 - Show that $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy z)\vec{j} + (2x^2z y + 2z)\vec{k}$ is irrotational. (j)

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

- (a) Solve $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = x^2 + 3$. 2
 - Prove that the system of confocal and coaxial parabolas $y^2 = 4a(x + a)$ is self orthogonal.

- (a) Solve $(D^2 + 4D + 3)y = e^x sinx$. (b) Solve $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$. 3

UNIT – II

- Solve $\frac{d^2y}{dx^2} + y = cosee x$ by using method of variation of parameters. 4
- Solve $(x+2)^2 \frac{d^2y}{dx^2} (x+2)\frac{dy}{dx} + y = 3x + y$ 5

UNIT – III

- 6 Expand $\sin(xy)$ in powers of (x-1) and $(y-\pi/2)$ upto second degree terms.
 - Discuss the maximum and minimum of $f(x, y) = x^3 + y^3 12x 3y + 20$. (b)

- If $x = rsin\theta \cos\theta$, $y = rsin\theta \sin\phi$ and $z = rcos\theta \text{ find } \frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$. 7 (a)
 - Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube. (b)

UNIT - IV

- Evaluate $\iint_R (x^2 + y^2) dx dy$, where R is the square $0 \le x \le a$, $0 \le y \le a$. 8 (a)
 - Transform the integral into polar-co-ordinates and hence evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} \, dy \, dx$. (b)

- Change the order of integration in $\int_0^a \int_x^a (x^2 + y^2) dy \, dx$ and then evaluate. (a)
 - Find the area included between the curves $y^2 = 4x$ and $x^2 = 4y$.

- If $\vec{F} = (3x^2 + 6y)\vec{i} 14yz\vec{j} + 20xz^2\vec{k}$, evaluate $\int_{\mathcal{C}} \vec{F} \cdot \vec{dr}$ where C is the straight line joining (0,0,0) to 10 (a) (1,1,1).
 - Using Stokes theorem, evaluate $\int_{C} \vec{F} \cdot \vec{dr}$ for the function $\vec{F} = x^{2} \vec{i} + xy \vec{j}$ in XOY-plane bounded by x = 0, y = 0, x = a, y = a.

11 Verify Divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ taken over the rectangular parallelepiped x = 0, x = 1, y = 0, y = 2, z = 0 and z = 3.