

B.Tech I Year II Semester (R15) Regular & Supplementary Examinations May 2018

MATHEMATICS - II

(Common to all)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Find the Laplace transform of cos²t.
 - (b) Find the inverse Laplace transform of $\frac{s}{s^2+s+13}$
 - (c) Find the half range sine series for the function $f(t) = t t^2$, 0 < t < 1.
 - (d) Obtain the Fourier series for f(x) = x in the interval (0, 2).
 - (e) State convolution theorem of the inverse transforms.
 - (f) Find the Fourier transformation of e^{-x^2} .
 - (g) Solve $py^3 + qx^2 = 0$ by method of separation of variables.
 - (h) Form the partial differential equation by eliminating the arbitrary constants: $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
 - (i) Find the Z-transformation of (naⁿ).
 - (j) Find the inverse Z-transformation of $\frac{1}{z-2}$.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Find the Laplace transform of the function $f(t) = \begin{cases} E \sin \omega t, & 0 < t < \pi/\omega \\ 0, & \frac{\pi}{\omega} < t < 2\pi/w \end{cases}$ having period $2\pi/\omega$.
 - (b) Find the Laplace transform of $\frac{1}{t}(e^{at} e^{bt})$.

OR

Solve by Laplace transform method. y'' - 3y' + 2y = 4, where y(0) = 2; y'(0) = 3.

[UNIT - II]

- 4 (a) Find the Fourier series to represent $(x x^2)$ from $x = -\pi$ to $x = \pi$.
 - (b) Find the half range cosine series for the function $f(x) = x^2$ in the range $0 \le x \le \pi$

OR

- 5 (a) Find the complex form of the Fourier series of $f(x) = e^{-x}$ in $-1 \le x \le 1$.
 - (b) Expand $f(x) = \begin{cases} \frac{1}{4} x, & \text{if } 0 < x < \frac{1}{2} \\ x \frac{3}{4}, & \text{if } \frac{1}{2} < x < 1 \end{cases}$ as the Fourier series of sin terms.

UNIT – III

Find the Fourier transform of $f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x > 1 \end{cases}$ Hence deduce that $\int_0^\infty \frac{\sin x}{x} dx$.

OR

7 Find the Fourier transformation of $e^{-a^2x^2}$, a>0

Contd. in page 2

Code: 15A54201

UNIT – IV

- 8 (a) Form the partial differential equation by eliminating the arbitrary functions $f(x^2+y^2, z-xy) = 0$.
 - (b) The ends A and B of a rod 20 cm long have the temperature at 30°C and 80°C until steady state prevails. The temperature of the ends is changed to 40°C and 60°C respectably. Find the temperature distribution in the rod at time t.

OR

9 (a) Find the partial differential equation by eliminating the arbitrary constants from:

 $(x-a)^2 + (y-b)^2 + z^2 = c^2$.

(b) A tightly stretched string of length 1 with fixed ends is initially in equilibrium position, it is set vibrating by giving each point a velocity $v_0 sin^3 \left(\frac{\pi x}{l}\right)$.

UNIT - V

- 10 (a) Evaluate Z-transformation of $\frac{z^2}{(z-1)(z-3)}$ using convolution theorem.
 - (b) Using Z-transforms solve, $y_n + \frac{1}{4}y_{n-1} = u_n + \frac{1}{3}u_{n-1}$ where u_n is a unit step sequence?

OR

- 11 (a) Evaluate Z-transformation of $\frac{z^3}{(z-1)^3}$ using convolution theorem.
 - (b) Using Z-transforms solve, $U_{n+2} 2U_{n+1} + U_n = 3n + 5$.

UPIQPBANK.COM