B.Tech II Year I Semester (R15) Supplementary Examinations June 2018

MATHEMATICS - III

(Common to CE, CSE, IT, ME, EEE, ECE & EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix}$.
- (b) Express the matrix $A = \begin{pmatrix} 1+i & 2 & 5-5i \\ 2i & 2+i & 4+2i \\ -1+i & -4 & 7 \end{pmatrix}$ as the sum of Hermitian matrix and Skew-Hermitian
- (c) State the underlying principle of false position method.
- (d) Find the Newton-Raphson iterative formula for $\frac{1}{N}$.
- (e) State Gauss's forward interpolation formula.
- (f) State Stirling's interpolation formula.
- (g) Reduce $y = a.x^b$ into linear form and write its normal equation.
- (h) Write down the formula for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at any point that are derived from Newton's forward interpolation formula.
- (i) Explain Picard's method.
- (j) Find y(0.1) if $\frac{dy}{dx} = x y^2$, y(0) = 1 by Euler's method.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

Diagonalise the matrix $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$.

OR

Reduce the quadratic form $x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$ to canonical form and also find its corresponding linear transform.

UNIT – II

- 4 (a) Find the root of $x^3 2x 5 = 0$ by Regula-Falsi method.
 - (b) Solve the system of equations using Gauss-Seidel method:

x + y + 54z = 110; 27x + 6y - z = 85; 6x + 15y + 2z = 72

OR

- 5 (a) Find the real root of 3x cosx 1 = 0 by Newton's Raphson method.
 - (b) Solve the system of equation by Crout's method:

3x + y + z = 4; x + 4y - z = -5; x + y - 6z = -12

Contd. in page 2

Code: 15A54301

UNIT – III

From the following data find v(43).

	110 1010 1110						
	. •			. •		90	
γ:	184	204	226	250	276	304	

Find f(0.37) using Bessel's formula from the following data: (b)

<i>x</i> :					0.5
<i>y</i> :	0.0998	0.1986	0.2955	0.3894	0.4794

OR

Use Lagrange's method find y(40). 7 (a)

<i>x</i> :		35		
<i>y</i> :	148	96	68	34

(b) Find the value of y at x = 2.9 from the following data using Gauss's backward formula.

x:	2.0	2.5	3.0	3.5	4.0
<i>y</i> :	246.2	409.3	537.2	636.3	715.9

UNIT - IV

Find the straight line that best fits the following data: (a)

<i>x</i> :	1	2	3	4	5
<i>y</i> :	14	27	40	55	68

(b) Obtain the value of f'(105) using the following data:

<i>x</i> :	60	75	90	105	120
f(x):	28.2	38.2	43.2	40.9	37.7

OR

(a) Fit a second degree parabola to the following data: 9

<i>x</i> :	10	12	15	23	20
<i>y</i> :	14	17	23	25	21

(b) Evaluate $\int_0^1 \frac{dx}{1+x}$ by trapezoidal rule dividing the range into eight equal parts.

[UNIT - V]

(a) Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1 find y(0.1) using Taylor's series method. (b) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 find y(0.2) by Runge-Kutta method. 10

Solve $U_{xx} + U_{yy} = 0$ in $0 \le x \le 4$, $0 \le y \le 4$ given that u(0,y) = 0; u(4,y) = 12 + y, u(x,0) = 3x and $u(x,4) = x^2$, take h = k = 1. 11