B.Tech II Year I Semester (R15) Regular \& Supplementary Examinations November/December 2017 DISCRETE MATHEMATICS
(Common to CSE \& IT)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: (10 $\times 02=20$ Marks $)$
(a) What is proposition and mention types of proposition?
(b) Define Tautology and contradiction.
(c) What is power set? Give one example
(d) Using the laws of set theory, simplify the following:
(i) $A \cap(B-A)$
(ii) $(A-B) \cup(A \cap B)$
(e) Define semi groups and monoids.
(f) If $G=\left(z_{6},+\right)$ and given that $H=\{0,2,4\}$, then show that H is non empty subset of G under the binary operation.
(g) If $G=(V, E)$ is an undirected graph with $|V|=v$ and $|E|=e$ and no loops, show that $2 e \leq v^{2}-v$
(h) A connected planner graph has 9 vertices having degrees 2, 2, 2, 3, 3, 3, 4, 4, 5 . How many edges are there? How many faces are there?
(i) Determine the coefficient of $x y z^{5}$ and $x^{3} z^{4}$ in the expansion of $(x+y+z)^{7}$.
(j) Obtain the sequence generated by $(1-4 x)^{-1 / 2}$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 (a) Show that $p \wedge(\neg q \vee r))$ and $p \vee(q \wedge \neg r)$ are logically not equivalent.
(b) Hypothesis: If I join JNTU then I will get best education. If I get best education, then I will get job in USA. If I get job in USA then I will become a millionaire. I joined JNTU.
Conclusion: I will become a millionaire.
Give an argument using rules of inference to show that the conclusion follows from the hypothesis.
OR
Establish the validity of the following argument with reasons.

$$
\begin{aligned}
& u \rightarrow r \\
& (r \wedge s) \rightarrow(p \vee t) \\
& q \rightarrow(u \wedge s) \\
& \neg t \\
& \therefore q \rightarrow p
\end{aligned}
$$

UNIT - II

Prove the following for any sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$
(i) If $A \cap C=B \cap C$ and $A \cup C=B \cup C$ then $A=B$
(ii) If $A \Delta C=B \Delta C$ then $A=B$

OR
If m, n are the positive integers with $1<n \leq m$ then prove that:
$S(m+1, n)=S(m, n-1)+n S(m, n)$

UNIT - III

Prove that under semi group homomorphism, the properties of:
(i) Associativity.
(ii) Idem potency.
(iii) commutativity are preserved.

OR
Determine the number of assignments of the Boolean variables w and y that will result in the value 1 for the following expressions when the value of x is 1 .
(i) $\bar{x} y+w$
(ii) $\bar{x} y+x w$
(iii) $x y+w$ (iv) $x+x y+w$

> UNIT - IV

If $G=(V, E)$ is an undirected graph or multigraph with no isolated vertices, then G has an Euler circuit if and only if G is connected and every vertex in G has even degree

OR
If $G=(V, E)$ is a loop free undirected graph with $|v|=n \geq 3$ and if $|E| \geq\binom{ n-1}{2}+2$ then G has a Hamilton cycle.

UNIT - V

A committee of eight is to be formed from 16 men and 10 women. In how many ways can the committee be formed if: (i) There are no restrictions? (ii) There must be 4 men and 4 women. (iii) There should be an even number of women. (iv) More women than men. (v) At least 6 men.

OR

Find a formula to express $0^{2}+1^{2}+2^{2}+\ldots \ldots . .+n^{2}$ as a function of n.
UPIQPBANK.COM

