Code: 15A02301



B.Tech II Year I Semester (R15) Regular & Supplementary Examinations November/December 2017

## **ELECTRICAL CIRCUITS - II**

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

# PART - A

(Compulsory Question)

\*\*\*\*

1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 

- (a) Define transient State with their classifications.
- (b) A series RLC circuit with R = 10  $\Omega$ , L = 2 H and C = 1 F has a constant voltage of 100 V applied at t = 0. Determine the initial values of I(t) and di(t)/dt.
- (c) Define phase sequence with their instantaneous e.m.f equations.
- (d) Draw the balanced delta-delta connection circuit.
- (e) Mention the properties to be satisfied by the periodic function f(t) of trigonometric form of Fourier series.
- (f) Mention the general properties of Fourier transforms.
- (g) Define tie set and cut set.
- (h) What is duality? What are dual quantities?
- (i) Sketch the low pass filter with its quadrant of operation.
- (j) State incidence matrix.

### PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

2 Prove that pure capacitance when connected across an alternating source draws the current leading over voltage by 90 degree. Show that power consumed by pure capacitance is zero.

#### OR

A coil of inductance 0.0805 H takes a current of 5 A when connected in series with a 50 μF loss-free capacitor across a 240 V, 50 Hz supply. Calculate: (i) Resistance of the coil. (ii) Power factor of the coil. (iii) The overall power factor. Sketch the phasor diagram.

### UNIT – II

4 Obtain the expressions for star-delta and delta-star equivalence of resistive network.

### OR

A balanced, three phase, star-connected load is fed from a 400 V, three phase, 50 Hz supply. The current per phase is 25 A (lagging) and the total active power absorbed by the load is 13.56 kW. Determine: (i) The resistance and inductance of the load per phase. (ii) The total reactive power. (iii) The total apparent power.

### UNIT – III

6 Derive trigonometric Fourier series representation of a periodic signal x(t) with fundamental period T.

#### OR

7 (a) Use the Fourier transform method to calculate  $v_0(t)$  for the given circuit.



(b) List the advantages of Fourier series and express its equations with its coefficients.

Contd. in page 2

**R15** 

Code: 15A02301

UNIT – IV

8 Find fundamental tie-set and cut-set matrix for the graph and its tree shown below.



9 With the help of nodal analysis on the circuit shown below: Find: (i) VA. (ii) The power dissipated in 2.5 ohms resistor.



- 10 Determine for each of the high-pass filter sections shown in figure:
  - (i) The cut-off frequency. (ii) The nominal impedance.



- 11 Elucidate the following terminologies with an example:
  - (i) Node. (ii) Linear graph. (iii) Tree. (iv) Twig. (v) Path.

\*\*\*\*