B.Tech II Year I Semester (R15) Regular \& Supplementary Examinations November/December 2017

SIGNALS \& SYSTEMS

(Common to ECE and EIE)
Time: 3 hours

Answer the following: (10 $\times 02=20$ Marks $)$
(a) Define energy and power signals.
(b) Define deterministic and random signals.
(c) State sampling theorem.
(d) State Dirichlets conditions.
(e) Define LTI-CT systems.
(f) What are the transforms used for the analysis of LTI-CT systems?
(g) Define DTFT \& Inverse DTFT.
(h) State the Time-Scaling property of LT.
(i) State the relation between DTFT \& Z-transform.
(j) List the methods used for finding the Inverse Z-transform.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Explain about the classifications of continuous time signals.
OR

Find the Cosine Fourier series of half wave rectified sine function.

State and prove the properties of continuous time Fourier transform.
OR
State and prove sampling theorem with necessary equations.
UNIT - III
Find the Fourier transform of $x(t)=e^{-a t} u(t)$. Sketch the magnitude and phase plot.

OR

Find the Fourier transform of a signal $\operatorname{sgn}(\mathrm{t})$.

8 State and prove any four properties of discrete time Fourier transform.

OR

By using Laplace transform, solve the differential equations:

$$
\frac{d^{3} y(t)}{d t^{3}}+7 \frac{d^{2} y(t)}{d t^{2}}+16 \frac{d y(t)}{d t}+12 y(t)=x(t) \text { if } x(t)=\delta(t), \frac{d y\left(0^{-}\right)}{d t}=0, \frac{d^{2} y\left(0^{-}\right)}{d t^{2}}=0, \text { and } y\left(0^{-}\right)=0 .
$$

11 (a) Describe the Z transform and ROC in detail.

