B.Tech II Year I Semester (R15) Regular \& Supplementary Examinations November/December 2017

SWITCHING THEORY \& LOGIC DESIGN

(Common to ECE \& EIE)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: (10 $\times 02=20$ Marks $)$
(a) Convert decimal 153 to octal.
(b) Give the associative law and commutative law.
(c) What is prime implicant? How to obtain it?
(d) What are don't-care conditions? What is the use of these?
(e) What is a decoder?
(f) Draw the block diagram of 2-to-1 line multiplexer.
(g) Define synchronous sequential circuit and an asynchronous sequential circuit.
(h) Define flip-flop. List different types of flip-flops.
(i) List different types of ROM.
(j) Compare ROM and RAM.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction: (i) $X-Y$. (ii) $Y-X$ by using 2 's complements.
(b) Obtain the 1's and 2's complements of the following binary numbers:
(i) 00010000 .
(ii) 00000000 .
(iii) 11011010 .
(iv) 10101010 .
(v) 10000101 .
(vi) 11111111

OR

3 (a) Simplify the following Boolean functions to a minimum number of literals.
(i) $\mathrm{x}\left(\mathrm{x}^{\prime}+\mathrm{y}\right)$.
(ii) $x+x^{\prime} y$.
(iii) $(x+y)\left(x+y^{\prime}\right)$.
(iv) $x y+x^{\prime} z+y z$. (v) $(x+y)\left(x^{\prime}+z\right)(y+z)$.
(b) Find the complement of the functions: $F_{1}=x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z$ and $F_{2}=x\left(x^{\prime} y^{\prime}+y z\right)$.
UNIT - II

4 (a) Simplify the Boolean function: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,2,4,5,6)$.
(b) Simplify the Boolean function: $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$.

OR
5 (a) Implement the following Boolean function with NAND gates: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,2,3,4,5,7)$.
(b) Implement Ex-OR function using only: (i) NAND gates. (ii) NOR gates.

UNIT - III

6 Illustrate the design procedure by taking BCD to excess-3 code converter as an example.

OR

7 (a) Implement full adder with two half adders and an OR gate.
(b) Design Four-bit magnitude comparator gate level circuit.

UNIT - IV

8 (a) With the help of circuit diagram, graphic symbol and characteristic table, explain the JK flip-flop.
(b) Design a four-bit binary Ripple Counter using D flip-flops and then explain the same.

OR
9 Design a Zero-Detector by giving circuit diagram, state table and state diagram.

UNIT - V

10 (a) Explain the architecture of PLA
(b) Briefly introduce the content addressable memory.

11 (a) Explain the architecture of FPGA.
(b) Briefly discuss Flash memories.

