Code: 15A05201

aue

R15

B.Tech II Year II Semester (R15) Regular & Supplementary Examinations May/June 2018

DATA STRUCTURES

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) What is best case and worst case performance?
- (b) Write the procedure for deleting an element from the list.
- (c) Convert ((A + B) * C (D E)) \$ (F + G) to postfix and prefix notation.
- (d) What are the limitations of linear queue? How they can be rectified?
- (e) What is an articulation point in a graph?
- (f) What is the difference between full binary tree and complete binary tree?
- (g) What are the various transformations performed in AVL tree?
- (h) What is the recurrence relation for worst case of Binary Search?
- (i) What are self-referential structures?
- (j) List the different types of collision resolving techniques.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

2 Describe the role of space and time complexities in measuring the performance of a program with an example.

OR

Design and implement an algorithm to search a linear ordered linked list for a given alphabetic key or name.

UNIT - II

Implement a queue so that each element of a queue holds a list of integers. Write the functions add Q and remove Q from such queue.

OR

What is a stack? Write its applications. Write down the procedure for implementing various stack operations.

UNIT – III

- 6 (a) Discuss about all cases in deleting an element from a BST. Give suitable example for each case.
 - (b) Construct Binary Search Tree by inserting the following key elements:

11, 15, 5, 6, 8, 4,17 & 15.

OR

7 Write and explain Dijkstra's algorithm for finding shortest path with an example.

(UNIT - IV)

Write an algorithm to sort a set of 'N' numbers using selection sort. Trace the algorithm for the following set of numbers: 14, 22, 80, 16, 67, 26, 43, 54 and 10.

OR

9 Explain merge sort with an example and analyze its complexity.

[UNIT - V]

10 Compare bucket hashing with open hashing and closed hashing. Write algorithm to search key value, insert key value and delete a key value in bucket hashing.

OR

Write a C program that search for a value in a stored array using non recursive binary search.
