

B.Tech II Year II Semester (R15) Regular & Supplementary Examinations May/June 2018

ELECTROMAGNETIC FIELDS

(Electrical & Electronics Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
- (a) State Coulomb's law and its limitations.
 - (b) Define dipole moment.
 - (c) What is meant by polarization?
 - (d) Distinguish between conduction current and displacement current.
 - (e) State Ampere's circuital law.
 - (f) Write the expression for torque on a current loop placed in a magnetic field.
 - (g) Define vector magnetic potential.
 - (h) Distinguish between self and mutual inductance.
 - (i) What is meant by dynamically induced e.m.f?
 - (j) What is the significance of intrinsic impedance?

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

A circular disc of radius 'a' m is charged uniformly with a charge-density of ' σ ' coulomb/m². Find the electric field intensity at a point 'h' m from the disc along its axis.

OF

Four positive point charges 10^{-9} coulomb each are situated in x-y plane at points (0, 0), (0, 1), (1, 1) and (1, 0) m. Find the electric field and potential at $(\frac{1}{2}, \frac{1}{2})$.

(II – TINU

4 State and derive the boundary conditions at the charge interface of two dielectric media.

OR

5 Deduce an expression for the capacitance of a parallel plate capacitor having two dielectric media.

(UNIT – III)

State and explain Biot-Savart's law. Also obtain the torque developed in a current carrying coil placed in a magnetic field.

OR

Find an expression for \overline{H} (field-intensity) at the centre of a circular wire carrying a current (I) in the anti-clockwise direction. The radius of the circle is 'a' and the wire is in XY plane.

UNIT - IV

8 Discuss about scalar and vector magnetic potentials with relevant expressions. Also state their properties.

OR

Two coils with negligible resistance and of self-inductance of 0.2H and 0.1H respectively are connected in series and parallel. If their mutual inductance is 0.1H, determine the effective inductance of their combination in each case.

[UNIT – V]

10 Derive Maxwell's equation in point form and integral form using Faraday's law.

OR

The electric field intensity of a uniform plane wave in air is 7500 V/m in the Y-direction. The wave is propagating in the X-direction at a frequency of 2×10^9 rad/s.

Find: (i) The wavelength. (ii) The frequency. (iii) The time period. (iv) The amplitude H.