B.Tech II Year II Semester (R15) Regular & Supplementary Examinations May/June 2018

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) What is induction principle? Give an example.
 - (b) Draw finite automata that accept a string start with '1' and ends with '0', $\Sigma = \{0, 1\}$.
 - (c) Construct a regular expression that accepts 3rd symbol from right end as 'a'.
 - (d) Define Arden's theorem.
 - (e) Construct the language L for $S\rightarrow aCa$, $C\rightarrow aCa/b$.
 - (f) Give the general forms of CNF.
 - (g) What is instantaneous description of PDA?
 - (h) Draw push down automata that accept the language $L = \{a^n b^n / n \ge 1\}$.
 - (i) Differentiate multi tape and multi track turing machine.
 - (j) List the properties of recursively enumerable language.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

Determine minimal deterministic finite automata (DFA) for the given transition table over $\Sigma = \{0,1\}$, where A is the initial state and C is the final state

	Syllibol	0	1
	state	U	'
	\rightarrow A	F	В
	В	С	G
	C *	С	Α
	D	G	С
	Е	F	Н
	F	G	С
-	G	Е	ပဖဖ
	Н	С	G

Symbol

PBANK.COM

OR

3 Construct DFA equivalent to NFA

 $\mu = (\{p,q,r\}, \{0,1), \delta, p, \{q,s\})$

Where δ is defined in the following table:

δ	0	1
р	{q,s}	{q}
q*	{r}	{q,r}
r	{s}	{p}
S*	-	{p}

[UNIT – II]

Find whether the languages $\{ww/w \text{ is in } (1+0)^*\}$ and $\{1^k / k = n^2, n \ge 1\}$ are regular or not.

ΩR

5 Construct an NFA for the regular expression (a+b)*aab(a+b)*

Contd. in page 2

- 6 For the given context free grammar (CFG) G, find Chomsky normal form (CNF). G has productions
 - S → AaA / CA / BaB
 - A → aaBa / CDA / aa / DC
 - $B \rightarrow bB / bAB/bb / aS$
 - $C \rightarrow Ca/bC/D$
 - $D \rightarrow bD/b$

OR

- 7 (a) Explain the closure properties of Context Free languages.
 - (b) Find the left most derivation and right most derivation to the following parse tree.

UNIT - IV

8 Convert the grammar $S\rightarrow oAA$, $A\rightarrow OS/1S/o$ to a PDA that accepts the same language by empty stack.

OR

9 Construct pushdown automata (PDA) for the following language:

$$L = \{a^{n+1} b^n : n \ge 0\}$$

Draw the transition diagram trace the string 'aaaabbb'.

UNIT – V

Design a Turing machine for the given language L = {0ⁿ1³ⁿ : n≥1}. Write the transition table for the turning machine and show the tracing of string 00111111.

OR

11 Prove that Ld is not recursively enumerable.
