B.Tech II Year II Semester (R15) Regular \& Supplementary Examinations May/June 2018 FORMAL LANGUAGES \& AUTOMATA THEORY
(Computer Science \& Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) What is induction principle? Give an example.
(b) Draw finite automata that accept a string start with ' 1 ' and ends with ' 0 ', $\Sigma=\{0,1\}$.
(c) Construct a regular expression that accepts $3^{\text {rd }}$ symbol from right end as ' a '.
(d) Define Arden's theorem.
(e) Construct the language L for $\mathrm{S} \rightarrow \mathrm{aCa}, \mathrm{C} \rightarrow \mathrm{aCa} / \mathrm{b}$.
(f) Give the general forms of CNF.
(g) What is instantaneous description of PDA?
(h) Draw push down automata that accept the language $L=\left\{a^{n} b^{n} / n \geq 1\right\}$.
(i) Differentiate multi tape and multi track turing machine.
(j) List the properties of recursively enumerable language.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I

Determine minimal deterministic finite automata (DFA) for the given transition table over $\Sigma=\{0,1\}$, where A is the initial state and C is the final state

Symbol state	0	1
\rightarrow A	F	B
B	C	G
C ${ }^{*}$	C	A
D	G	C
E	F	H
F	G	C
G	E	G
H	C	G

PBANK.COM

OR

3 Construct DFA equivalent to NFA

$$
\mu=(\{p, q, r\},\{0,1), \delta, p,\{q, s\})
$$

Where δ is defined in the following table:

δ	0	1
p	$\{q, s\}$	$\{q\}$
q^{\star}	$\{r\}$	$\{q, r\}$
r	$\{s\}$	$\{p\}$
S^{\star}	-	$\{p\}$

UNIT - II

Find whether the languages $\left\{w w / w\right.$ is in $\left.(1+0)^{\star}\right\}$ and $\left\{1^{k} / k=n^{2}, n>=1\right\}$ are regular or not.

OR

Construct an NFA for the regular expression $(a+b)^{\star} a a b(a+b)^{\star}$

7 (a) Explain the closure properties of Context Free languages.
(b) Find the left most derivation and right most derivation to the following parse tree.

UNIT - IV
For the given context free grammar (CFG) G, find Chomsky normal form (CNF). G has productions

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AaA} / \mathrm{CA} / \mathrm{BaB} \\
& \mathrm{~A} \rightarrow \mathrm{aaBa} / \mathrm{CDA} / \mathrm{aa} / \mathrm{DC} \\
& \mathrm{~B} \rightarrow \mathrm{bB} / \mathrm{bAB} / \mathrm{bb} / \mathrm{aS} \\
& \mathrm{C} \rightarrow \mathrm{Ca} / \mathrm{bC} / \mathrm{D} \\
& \mathrm{D} \rightarrow \mathrm{bD} / \mathrm{b}
\end{aligned}
$$

UNIT - III

