Max. Marks: 70

B.Tech II Year II Semester (R15) Regular & Supplementary Examinations May/June 2018

MATHEMATICS - IV

(Common to EEE, ECE and EIE)

Time: 3 hours

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
- (a) Define Gamma and Beta functions.
 - (b) Evaluate $\Gamma\left(\frac{5}{2}\right)$ and $\Gamma(10)$.
 - (c) Prove the recurrence relations: $J_n^1(x) = \frac{1}{2} [J_{n-1}(x) J_{n+1}(x)]$.
 - (d) Show that $P_2(\cos \theta) = \frac{1}{4}(1 + 3\cos 2\theta)$.
 - (e) Write Harmonic function in Cartesian and Polar form.
 - (f) Show that $W = e^z$ is analytic function.
 - (g) State generalized Cauchy's integral formula.
 - (h) Determine the poles and order for the function $\frac{z+4}{(z-1)^2(z-2)^3}$
 - (i) State Cauchy Residue theorem.
 - (j) Write Laurent's series expansion.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

- 2 (a) Show that $\int_0^\infty \sqrt{y} e^{-y^2} dy \times \int_0^\infty e^{-y^2} / \sqrt{y} dy = \frac{\pi}{2\sqrt{2}}$.
 - (b) Compute $\int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} d\theta$ by expressing in terms of gamma functions.

OR

Solve $4x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + y = 0$ by the method of series solution.

(UNIT – II)

4 Using suitable recurrence relation, obtain the expression for the functions:

(i)
$$J_{3/2}(x)$$
. (ii) $J_{-3/2}(x)$. (iii) $J_{5/2}(x)$. (iv) $J_{-5/2}(x)$.

OR

5 Derive Rodrigue's formula. Hence compute $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$ and $P_4(x)$.

UNIT – III

6 State and prove Cauchy- Riemann equation in polar form.

)R

7 Discuss the transformation $w = \sin z$.

(UNIT – IV

Compute $\int_C (\overline{z})^2 dz$ where C is the circle: (i) |z| = 1. (ii) |z - 1| = 1.

OR

9 State Cauchy's theorem, using Cauchy's integral formula compute $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ C: |z| = 3.

(UNIT - V)

Evaluate $\int_{\mathcal{C}} \frac{z-1}{(z+1)^2(z-2)} dz$, where $\mathcal{C}: |z-1|=2$ using Cauchy's residue theorem.

OR

- 11 (a) Determine the poles and their residue at $\frac{\sin z}{(2z-\pi)^2}$
 - (b) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in Laurent series valid for |z| < 1.
