Code	e No: 133AP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2018 ELECTROMAGNETIC FIELDS (Electrical and Electronics Engineering)	/
Time: 3 Hours Max. Marks: 75		
AGNote	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	/
74	PART- A	
(1.a) (b) (c) (d) (e)	Define electro static field and mention any two sources. Find the potential at $R_A = 5m$ with respect to $R_B = 15m$ due to point change $Q = 500 \mu c$ at the original and zero reference at infinity. What are Conductors and Insulators? Give examples. Derive Ohm' law in point form. Deduce the Relation between magnetic flux, magnetic flux density. [2]	/
f) g) h) i)	Find the magnetic field intensity due to a current carrying conductor with finite length: Explain Lorentz force equation. Derive Neuman's formula for mutual inductance. State Faraday's law of electromagnetic induction. Determine the e.m.f induced about the path r=0.5, z=0, t=0. If B=0.01sin377t. [3]	/
△ (Three equal positive charges of 4×10 coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of the square.	/
(b)	State and explain Maxwell's first law. [5+5]	
3.a)	What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient. [5+5]	/
4.a) b)	Derive the expression for the energy stored in the charged condenser. The capacitance of a parallel plate condenser is $0.2\mu\text{F}$. Potential difference between the plates is 2V. Calculate the energy stored by the charged condenser. [5+5] OR	
△ (¬5.a)	Differentiate static electric and magnetic fields. Derive Equation of continuity. What is its significance? [5+5]	/
6.a) b)	Find the Magnetic Field Intensity due to a straight current carrying filament. Find the magnetic field intensity at the centre O of a square loop of sides equal to 5M and carrying 10A of current. [5+5]	
AG	AG AG AG AG AG	/

