III B. Tech I Semester Regular Examinations, October/November - 2018 COMPILER DESIGN

(Computer Science and Engineering)

T	ime: 3	hours Max. Mar	ks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		<u>PART –A</u>	
1.	a)	What is a preprocessor? Mention its objectives.	[2M]
	b)	What is recursive decent parsing?	[2M]
	c)	Define inherited and synthesized attributes.	[2M]
	d)	What is three-address code? Give an example.	[3M]
	e)	Draw the typical structure of an activation record.	[3M]
	f)	What is dead code?	[2M]
2.	a)	Write regular expressions for the following languages: i) All strings of lowercase letters that contain the five vowels in order. ii) All strings of lowercase letters in which the letters are in ascending lexicographic order.	[7M]
	b)	iii) All strings of a's and b's with an even number of a's and an odd number of b's. Differentiate between static and dynamic scoping.	[7M]
3.	a)	Present the formal definition and notational conventions of CFG.	[7M]
	b)	Explain the procedure for eliminating ambiguity from a grammar. Give an example.	[7M]
4.	a) b)	Differentiate between LR(1), Canonical-LR and LALR parsing methods. Below grammar generates binary numbers with a "decimal" point: $S \rightarrow L \cdot L \mid L$ $L \rightarrow LB \mid B$ $B \rightarrow 0 \mid 1$ Design an Lattributed SDD to compute S val. the decimal number value of an	[7M] [7M]
		Design an L-attributed SDD to compute S.val, the decimal-number value of an input string.	
5.	a)	Give Three-Address Code and it's quadruple representation for the assignment: $a = b * - c + b * - c$;	[6M]
	b)	Discuss in detail about type synthesis and type inference.	[8M]

6. a) What are the limitations of access links? How displays solve those issues? [7M] Explain an example.

b) Generate code for the following three-address statements assuming a and b are [7M] arrays whose elements are 4-byte values:

7. a) Identify and eliminate global common subexpressions in the flow graph below: [9M]

b) Explain data-flow abstraction with an example.

[5M]

III B. Tech I Semester Regular Examinations, October/November - 2018 COMPILER DESIGN

(Computer Science and Engineering)

_	Time:	3 hours Max. M	arks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		<u>PART –A</u>	
1.	a)b)c)d)	What happens in Analysis and Synthesis phases of compilation? Define an ambiguous grammar. What is lookahead-LR parsing? Compute three-address code for the DAG below:	[2M] [2M] [2M] [3M]
	-,	Th.com	[]
	e) f)	What does heap and stack areas of run-time memory store? Define a global common sub expression. PART -B	[3M] [2M]
2.	a) b)	How compilers can be used for optimization in parallel systems? With a suitable transition diagram, explain recognition of identifiers.	[7M] [7M]
3.	a)	Consider the context-free grammar: S -> S S + \ S S * \ a. For the string aa + a* give a leftmost derivation, rightmost derivation and a parse tree.	[7M]
	b)	Construct SLR parsing table for the grammar in above question.	[7M]
4.	a)	Show that the following grammar: $S \rightarrow Aa \mid bAc \mid Bc \mid bBa$ $A \rightarrow d$ $B \rightarrow d$	[7M]
	b)	is LR(1) but not LALR(1). Discuss in detail about dependency graphs with suitable examples.	[7M]
5.	a) b)	Write about type inference for polymorphic functions. Translate the arithmetic expression $a[i] = b*c - b*d$ into a syntax tree, quadruples and triples.	[7M] [7M]
6.	a)	What are the principles associated with designing calling sequences and the layout of activation records?	[7M]

b) Generate code for the following three-address statements assuming stack [7M] allocation, where register SP points to the top of the stack.

call p call q return call r return

return

b)

7. a) Discuss about copy propagation and dead code elimination.

[7M] [7M]

III B. Tech I Semester Regular Examinations, October/November - 2018 COMPILER DESIGN

SET - 3

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer **ALL** the question in **Part-A** 3. Answer any **FOUR** Questions from **Part-B** PART -A 1. List any 4 compilers and 2 interpreters you know. a) [2M] What is the key difference between lexical analysis and parsing? b) [2M] c) What is syntax-directed definition? [2M]d) Give three-address code for the statement: do i = i + 1; while (a [i] < v); [3M]e) What is an activation link? Give an example. [3M] f) Define a transfer function. [2M] PART-B 2. What are program translators? Explain. a) [7M] b) Describe the languages denoted by the following regular expressions: [7M] (i) (alb)*a(alb)(alb.(ii) a*ba*ba*ba* 3. Give an algorithm to eliminate productions containing useless symbols from a [7M] a) Compute FIRST and FOLLOW for the grammar: S -> S S + \ S S * \ a b) [7M] 4. Present the algorithm for LALR parsing table construction. a) [7M] b) For the grammar below: [7M] $E \rightarrow E + T \mid T$ $T \rightarrow num$. num | num Give an SDD to determine the type of each term T and expression E. 5. Explain the value-number method for constructing the nodes of a DAG. a) [7M] b) Generate three-address code for the grammar below: (B is a Boolean expressing [7M] and S is a statement) $S \rightarrow if (B) S_1$ $S \rightarrow if (B) S_1 else S_2$ $S \rightarrow \text{while } (S) S_1$ 6. List and explain different subdivisions of run-time memory. [4M]

b) Construct flow graph for the three-address code equivalent of the below code: [10M]

```
for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

c[i][j] = 0.0; 

for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

c[i][j] = c[i][j] + a[i][k]*b[k][j];
```

7. a) Optimize the code given below, by eliminating common subexpressions, [7M] performing reduction in strength on induction variables, and eliminating all the induction variables.

```
the first variables.

dp = 0.

i = 0

L: tl = i*8

t2 = A[tl]

t3 = i*8

t4 = B[t3]

t5 = t2*t4

dp = dp+t5

i = i+1

if i < n goto L
```

b) Explain the procedures for elimination of unreachable code and algebraic [7M] simplifications in Peephole Optimization

2 of 2

III B. Tech I Semester Regular Examinations, October/November - 2018 COMPILER DESIGN

		(Computer Science and Engineering)	
T	ime: 3	hours Max. Mar	ks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		<u>PART –A</u>	
1.	a) b)	What is the purpose of Loader/Linker in language processing? What are left-most and right-most derivations?	[2M]
	c)	What is an annotated parse tree? Give an example.	[2M]
	d)	Give directed acyclic graph for the expression: $a + a * (b - c) + (b - c) * d$.	[3M]
	e) f)	What are the basic functions of the memory manager? Define a semi lattice. PART -B	[3M] [2M]
2	-)		FO. V T
2.	a) b)	List and explain in detail about different phases of compilation. What are the problems that might arise while recognizing tokens?	[9M] [5M]
3.	a)	Design grammars for the following languages: (i) The set of all strings of 0s and 1s, such that every 0 is immediately followed by at least one 1. (ii) The set of all strings of 0s and 1s that are palindromes.	[7M]
	b)	Explain the structure of LR parsing table, with an example.	[7M]
4.	a)	Discuss about the Dangling-Else ambiguity.	[7M]
	b)	Explain the procedure for eliminating left recursion from SDTs.	[7M]
5.	a)	Explain about one-pass code generation using back patching.	[7M]
	b)	Construct parse trees for the types in t [2] [3] and char [10].	[7M]
6.	a)	The following C program computes Fibonacci numbers: int f (int n) { int t,s; if (n < 2) return 1; s = f(n-1); t = f(n-2); return s+t;	[7M]
		Suppose that the activation record for f includes the following elements in order: return value, argument n, local s, and local t. Show the complete activation tree for the call f(5).	
	b)	Discuss the design issues of Code Generator.	[7M]
7.	a) b)	Explain about the method of computing transfer equations for reaching definitions. Construct an algorithm that will perform redundant-instruction elimination in a sliding peephole on target machine code.	[7M] [7M]