III B. Tech II Semester Supplementary Examinations, November - 2018 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

b) Write about Affine transformations. [4M] c) What is the significance of dot products in Cyrus-Beck line clipping algorithm? [4M] d) Distinguish between curve and surface in 3-D space. [4M] e) Mention the difficulties that can be encountered in implementing the painter's algorithm. f) Define interframe coherence. [3M] PART -B 2 a) Discuss the design issues in color CRT monitors. [4M] b) Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window. 5 a) Derive the matrix form for the cubic Bezier curves. [8M]
d) Distinguish between curve and surface in 3-D space. [4M] e) Mention the difficulties that can be encountered in implementing the painter's algorithm. f) Define interframe coherence. [3M] PART -B 2 a) Discuss the design issues in color CRT monitors. [4M] b) Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
d) Distinguish between curve and surface in 3-D space. [4M] e) Mention the difficulties that can be encountered in implementing the painter's algorithm. f) Define interframe coherence. [3M] PART -B 2 a) Discuss the design issues in color CRT monitors. [4M] b) Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
algorithm. f) Define interframe coherence. [3M] PART -B 2 a) Discuss the design issues in color CRT monitors. Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. [8M] What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
PART -B 2 a) Discuss the design issues in color CRT monitors. Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
part -B 2 a) Discuss the design issues in color CRT monitors. Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
2 a) Discuss the design issues in color CRT monitors. Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. [8M] 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
2 a) Discuss the design issues in color CRT monitors. Explain the differences between a general graphics system designed for a programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. [8M] 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
programmer and one designed for a specific application, such as architectural design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having [8M] centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
design? c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
 c) Differentiate between pixel addressing and object addressing. [4M] 3 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
 a) Show that two successive reflections about any line passing through the coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having [8M] centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
coordinate origin is equivalent to a single rotation about the origin. b) Calculate the pixel location approximating the first octant of a circle having [8M] centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
 b) Calculate the pixel location approximating the first octant of a circle having [8M] centre at (4, 5) and radius 4 units using Bresenham's algorithm. 4 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
 a) What are the phases defined in typical viewing pipeline? Explain briefly about each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping when the clipping polygon is a concave window.
each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping [8M] when the clipping polygon is a concave window.
each phase. b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping [8M] when the clipping polygon is a concave window.
b) Justify that the Sutherland - Hodgeman algorithm is not suitable for clipping [8M] when the clipping polygon is a concave window.
when the clipping polygon is a concave window.
www.upiqpbank.com
5 a) Derive the matrix form for the cubic Bezier curves [8M]
5 a) Define the matrix form for the cause belief our ves. [0141]
b) Describe the Phong illumination model. Explain the parameters used in Phong's [8M]
model.
6 a) Show how the calculation of the intersection of an edge with a scan line can be [8M]
made incremental as opposed to absolute.
b) Derive the transformation matrix for scaling an object by a scaling factor 's' in a [8M]
direction defined by the direction angles α , β and γ .
7 a) Describe linear list notation of animation languages. [8M]
b) Discuss in detail the steps of Animation [8M]
