$\pmb{\mathsf{M.Sc.} \ \mathsf{Degree} \ \mathsf{Examinations}, \mathsf{November-2015}}\\$

III Semester - Organic Chemistry

Paper- I: Organic Spectroscopy-I

(Regulation 2010)

Time: Three Hours	(regulation 2010)	Maximum Marks	: 80
	Answer all Questions		
1. (a) Write a short note on U\	Unit-I /-band structure		(3)
(or) (b) Write the formula and te	rms in Beer-Lamberdt Law (Derivation is no	t required)	
· · · · · · · · · · · · · · · · · · ·	gation of λ max in acknes with an example.		(7)
`	or) of UV spectra of enones. Describe Woodwo	ord-Fieser empirical	rules for
	xplain the structure of haloketones (diagram	is needed)	
	or) and cotton <mark>effect and ii) Hyperchromic</mark> and	hyperchromic effects	S.
4. (a) Define overtones and Fe		K.com	(3)
2	ple, conjugation effect on the carbonyl streto	l g	
V.	ogen bonding affect – O-H stretching frequer (or)	- 	(7)
(b) Describe (i) ring size effe	ect (ii) resonance and (iii) double bonds o	n IR spectra of ester	S.
(b) Distinguish the following (i) (CH ₃ CH ₂ CH ₂ CH ₂)3 _N a	am of an IR spectrometer. Write notes on py (or) with the help of IR spectroscopic information and CH ₃ CH ₂ CH ₂ CH ₂ NH ₂ and		(10)
7 (a) Define chemical effect	Unit-III		(2)
7. (a) Define chemical effect (or) (b) What is coupling constant	nt(J)?		(3)
8. (a) Explain the effect of anis	sotropy in PMR spectroscopy with reference	to Benzene.	(7)
(b) Explain how do you disti	(or) inguish intra and inter molecular hydrogen b	onding using PMR s	pectra.
(ii) How many PMR sign	als are obtained for the following compound and chi		
נא) לון הואסמאים וווה וומנמום טו	mot order apoetra or AwiA type molecule wit	in an Grampie.	

(ii) Explain the splitting pattern in the PMR spectra of the following molecules.

CH3 - CH2 - Cl

M.Sc. Degree Examinations, November-2015 III Semester - Organic Chemistry

Paper- II: Organic Synthesis, Mechanisms and Nano Chemistry

(Regulation 2010)

Time: Three Hours	(Regulation 2010)	Maximum Marks:	80
	Answer all Questions		
1. (a) Explain the kinetic affects (or)			(3)
(b) Write notes on the testing	•		
(a) Write notes on difference:(o(b) Write the stability and rea			(7)
3. (a) Explain the following i) Cross over experiments ii) Aromatic substitutions (o	s (SN ¹ & SN ²)		(10)
(b) i) Sandmayer reaction ii) Auto oxidation	Unit-II	E .	
4. (a) Give any four suitable rea	agents for the formation of diols	F K	(3)
	conversion of hydrocarbons into aldehydes by	using SCO ₂ as re	quest.
5. (a) Give the reaction mechan	nism of oppenauer oxidation (or)	d	(7)
(b) Give the list of synthetic a			
6. (a) Give the synthetic application i) Ruo ₄ ii) Mno ₂	O A N		(10)
(b) Draw the reaction mecha i) KMNO₄ ii) Ag₂CO₃	(or) nism in the use of following reagents		
7. (a) Write a notes on reductiv	Unit-III e process of aldehydes		(3)
(or)	veen the properties of NaBH4 and LiAlH4?		(0)
, ,	d synthetic importance of Birch reduction		(7)
(b) Explain the following with i) DIBAL (Di Isobutyl Alur ii) NaBH₃CN (Sodium cya	minium hydrides)		
9. (a) Explain the following i) Catalytic hydrogenation ii) Reductive process by the			(10)

- (b) Give the reaction mechanism of the following:
 - i) Aluminum alkoxide
 - ii) Reduction of Azo and Nitro compounds

Unit-IV

10. (a) Write the short notes on carbon nanotubes (3)

- (b) Draw the structure of multi-wall carbon nanotubes.
- 11. (a) Give the synthesis of solid-gaseous technique for production nanotubes

(7)

(10)

- (b) Write the applications of carbon nanotubes.
- 12. (a) Explain the synthesis of carbon nanotubes with growth and catalyst activated growth mechanism

(or)

- (b) Explain the following properties of carbon nanotubes.
 - i) Adsorption

ii) Electric and optical www.kvrssgroup.com

M.Sc. Degree Examinations, November-2015

III Semester - Organic Chemistry

Paper- III: Alkaloids and Phenothiazines (Regulation 2010)

Ti	me : Three Hours Maximum Marks:	80	
Answer all questions			
1.	Unit-I Give the structure of the following: a) Cinchonine and canadine	3M	
	(or) b) Quinine and isoquinaline		
2.	a) Explain occurrence and isolation methods of the Alkaloids. (or)	7M	
	b) Define and classify Alkaloids.		
3.	 a) Explain how Hoffman degradation helps in the structural elucidation of Alkaloids and give synthesis of Berberine. (or) 	the 10M	
	b) Give the structural elucidation and synthesis of Glaucine.		
4.	a) Give the structure of codeine (or) b) Give the structure of Emetine	3M	
5.	Give the structural elucidation and stereo chemistry of a) Thebaine (or) b) Morphine	7M	
6.	a) Give synthesis of any rearranged products of Morphine alkaloids	10M	
	b) Biogenesis of Alkaloids Unit-III		
7.	Draw the structures of a) Ephedrine and Brucine b) Ergotamine and nicotine	3M	
8.	Explain the structural elucidation of a) Strychinine (or) b) Isolysergic acid	7M	
9.	Give the total synthesis of a) Reserpine (or) b) Nicotine	10M	
	Unit-IV		
10	Write the structure of the following a) Prochlorperazine (or)	3M	
4.4	b) Thioriazine	71.4	
11	a) Outline the general methods of synthesis of phenothiazines (or)	7M	
	b) Describe the synthesis of Mesoridazine		
12	a) Write the synthesis of Promazine and Trifluooperazine (or)	10M	
	b) Discuss the pharmacological properties of phenothiazines.		

Unit-IV

10. (a) List prominent IR frequencies for

- (b) Write λ max in the UV spectrum of benzene

(10)

(3)

. Predict the possible structure for the following. (7)
(a) A compound has a strong absorption peak at 1718cm⁻¹ and medium peak at 2900cm⁻¹. NMR of this compound shows a quartet at 2.45 δ (2H), a singlet at 2.2 δ (3H) and a triplet at 1.1 δ (3H). Its molecular weight is 72.

(or)

- (b) UV spectrum of a compound of molecular weight 86 shows δ max around 280nm with log ϵ =1.3. Its NMR spectrum shows a quartlet at 2.45 δ (6H) and a triplet at 1.4 δ (4H).
- 12. Describe salient features of IR, UV and NMR of the following compounds.

M.Sc. Degree Examinations, November-2015

III Semester - Organic Chemistry

Paper- IV: Chemistry of Natural Products

(Regulation 2010)

	(Regulation	•	
Ti	Time : Three Hours	Maximum Marks: 8	30
	Answer all qu	uestions	
4	Unit-I		21.4
1.	 a) Draw the structures of Zingiberene and Eudesmol (or) 	3	3M
	b) Give the classification of terpenoids		
	s) erre are diagonication of to portolice		
2.	2. a) Explain the sources and isolation techniques for flav	anoids. 7	7M
	(or)		
	b) Write the general methods for the structural elucidat	ion of terpenoids.	
3.	2 a) Discuss the conthesis of Kampford	1	10M
٥.	 a) Discuss the synthesis of Kampferol (or) 	'	I OIVI
	b) Write the Biosynthesis of terpenoids		
	,		
	Unit-II.	oup.com	
4.	4. Draw the structures of	3	3M
	a) Progestrone	C	
	(or) b) Oxytocin	E	
	b) Oxylociii	S 5	
5.	5. Write the structural elucidation of following	3	7M
	a) Oestrone (or)		
	b) Thyroxin	D D D	
6	C. Muito the atmost wall also idetion and a with a circ of	0 2	1014
6.	 Write the structural elucidation and synthesis of a) Androsterone 	₫.፱	10M
	(or)	9 9	
	b) Progestrone	- '면 링	
	Unit-III	1 3 8	
7.			3M
	(or)	>	J1V1
	b) Write the classification of enzymes	13.5	
	9 a) Write the biggyethesis of B WWW.upigpba	nk.com	
8.	o. a) write the biosynthesis of b ₁		7M
	(or) b) Write the biological importance and synthesis of PG	E.	
	b) write the biological importance and synthesis of FG	L1	
9.	9. a) Write the synthesis and physiological importance of	vitamin A₁ 1	10M
	(or)	·	
	b) Explain briefly about the coenzymes NAD & FAD.		
	Unit-IV		
10	10. a) What are the sources of naturally occurring insectici	des 3	3M
	(or)		
	b) Draw the structure of Rotenone		
11.	11. Give the structure and synthesis of the following:	7	7M
	a) Jasmolone		
	(or)		
	b) Spilanthol		
12	12. Discuss the structural elucidation and synthesis of the	following 1	10M
14	a) Rotenone	ionowing i	JUNI
	(or)		
	b) Pyrethrin		
	* * *		

M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Organic Chemistry

Paper I – ADVANCED ORGANIC SPECTROSCOPY

(Regulation 2012)

Time: Three hours

Maximum: 70 marks

UNIT I

1. (a) Write a short note on Gate pulse CMR spectrum.

(6)

(8)

(b) Predict the $^{13}\text{C-NMR}$ signals for the following compounds and assign the δ values.

(i) www.kvrssgroup.com
woodnoub of the check of the check

2. (a) Explain briefly the α, β and γ effects in CMR spectroscopy.

- (6)
- (b) (i) How will you distinguish between cis-and trans-2-butens on the basis of ¹³C-NMR spectroscopy.
 - (ii) Predict the $^{13}\text{C-NMR}$ signals for the following compound and assign the δ -values

UNIT II

- 3. (a) Write about nuclear magnetic double resonance in PMR and CMR spectroscopy. (6)
 - (b) Explain the resonance of the nuclei for 'H-19F and 'H-31P coupling interactions with suitable examples. (8)

4.	(a)	An organic compound exhibits the following spectral data: MF:160	(6)
		OV nm: 212	
		$1R \text{ cm}^{-1}$: (2941–2857 (m); 1742 (s); 1460 (m); 1380 (m); 1260 (s); 1056 (s).	
·-		'H NMR : δ 1.29 (6H, t J=7.2 H ₃) ; 2.5 (2H,S); 4.16 (4H,q CJ = 7.2 H ₃)	
		Determine the structure of the compound.	
	(b)	A Carbonyl compound A (mol-formula C_3H_6O) gives a singlet at $\delta 2.17$ in its spectrum, when it is treated with C_6H_5CHO in dilethanolic $NaOH$, it form B v gives the following data.	
		$MF ext{ of } B = C_{17}H_{14}O$	
	-	1R (cm ⁻¹): 3025, 1665, 1630, 1600, 1495, 763, 753	
		PMR δ : 7.05 (2H, dJ = 18 H ₃); 7.60 (10H, m); 7.82 (2H, dJ=18 H ₃)	-
	,	Determine the structures of A and B. UNIT III	
5.	(a)	Write in detail about circular bire fringence and circular dichroism.	(6)
	(b)	Explain $\alpha =$ haloketone rule and its relationship to cotton effect by giving sui examples.	table (8)
6.	(a)	Explain briefly the application of CD in structure elucidation of cyclic ketones.	(6)
	(b)	Explain briefly the following.	(8)
•		(i) Single cotton curve and multiple cotton curve.	
		(ii) Benzoate ester rule. UNIT IV	
7.	(a)	Discuss the HETCOR with suitable examples.	(6)
	(b)	Explain the importance of INADEQUATE and COSY with suitable examples.	(8)
		Or	
8.	(a)	Explain the use of DEPT in 2D-NMR spectroscopy with suitable examples.	(6)
	(b)	Define the following terms	
•		(i) DQFCOSY	,
		(ii) HOM2DJ	
		(iii) INEPT	

UNIT V

Deduce the structure of the compound from the spectral data given below.

9.

 $MF: C_8H_8O_2$ (6)1Rcm⁻¹: 1710 (s); 3000–2500(br) (imp peaks only) 'HNMR δ : 7.2 (5H, s); 3.5 (2H, s); 11.6 (1 H, S) exchange with D₂O. A compound having the following spectral data is given below. (b) $MF : C_3H_6Cl_2$ UVnm: 210 1R cm⁻¹: 2940 (m); 1265 (w); 690 (s) 'HBMR δ : 3.5 (2 H, d); 3.3 (1H, m); 1.25 (3H, d) Assign suitable structure to the compound and explain the data. (8)Or 10. Determine the structure of an organic compound which shows the following spectral data: www.kvrssgroup.com $MF: C_4H_7N$ UVnm: 200 1Rcm⁻¹: 2941 (m); 2270 (m); 1460 (m) 'HNMR δ : 2.72 (septet, J = 6.7 Hz, 1H); 1.33 (d, J=6.7 Hz, 6H) A compound having the following spectral given below. (8) $MF: C_4H_8O_3$ 1Rcm⁻¹: 2500-3000, 1715 'H NMR δ ; 1.27 (t); 3.66 (q); 4.13 (s); 10.95 (s). Assign suitable structure to the compound and explain the data. www.upiqpbank.com

UNIT II

- 3. (a) Describe Diastero selective epoxidation of Homo allylic alcohols. (6)
 - (b) Write a short note on the following
 - (i) Perhydroxylation using OSO₄
 - (ii) Applications of $m ClC_6H_4COOOH$.

Or

- 4. (a) Write a short note on reduction with di-imide.
 - (b) Discuss the following:
 - (i) Hydrogenolysis
 - (ii) Wolf-Kishner reduction.

UNIT III

- 5. (a) Discuss the mechanism and applications of Favorski rearrangement.
 - (b) Discuss the mechanism of the following
 - (i) Wagner-Meerweian rearrangement
 - (ii) Claisen rearrangement

Or

2 (OCH 30212)

- 6. (a) Discuss the mechanism and applications of Sommelete-Hauser rearrangement. (6)
 - (b) Discuss the mechanism of following. (8)
 - (i) Curtius rearrangement
 - (ii) Smiles rearrangement.

Or

3

UNIT V

- 9. (a) What is stereoselectivity? Explain its importance in reterosynthetic disconnection approach with examples. (6)
 - (b) Discuss in detail the one group C-C disconnection in alcohols with examples. (8)

Or

- 10. (a) Explain the retrosynthetic pathway for the synthesis of aspirin. (6)
 - b) What is functional group inter convenion? Explain in detail by giving suitable examples. (8)

(OCH 30312)

M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

UD.COM Third Semester

Organic Chemistry

Paper III - ORGANIC SYNTHESIS

(Regulation 2012)

Time: Three hours

Maximum: 70 marks

Answer ALL questions.

UNIT I

- 1. (a) Discuss in detail the alkylation of α thiocarbanions with examples. (6)
 - (b) Explain the umplang reaction along with mechanism and write about its significance in c-c single bond formation. (8)

 \mathbf{Or}

- 2. (a) What are sulfurylides? Explain its importance in organic synthesis. (6)
 - (b) Discuss briefly the alkylations of relatively acidic methylene groups with examples. (8)

(OCH 30312)

4

0		·		6.	(a)	Explain the mechanism of the
3.	(a)	Explain the stereospecific synthesis from			•	photosensitized diels alder reaction. (6)
	(b)		(6) (8)		(b)	Discuss the following reagents synthetic utility. (8)
	(~)		v.kvrssg	rou	p.co	
		(ii) Shapiro reaction.	(R)		5	(ii) Cyclopenta dienones.
		Or 8				UNIT IV
4.	(a)	Discuss briefly the Claisen rearrangement allyl vinyl ethers.	The second second			이 본
	(b)		6)	7.	(a)	Write a short note on photolysis of N-nitrosoamides with examples. (6)
	(0)	S C	8)			
		(i) Witting reaction			(b)	Discuss the following reactions with mechanisms. (8)
		(ii) Fragment reactions.				3
	,	UNITIII	A			(i) HLR reaction
5.	(a)		3)			(ii) Bartas reaction.
í	(b)	Discuss the following:	y.upiqpb	ank	c.cor	Or
		(i) Catalysis by lewis acids		8.	(a)	Write a short note on photolysis of organic
		(ii) Asymmetric diels alder reactions.				hypohalites. (6)
		Or			(b)	Discuss briefly the photolysis of ketones with suitable examples. (8)
		2 (OCH 30312)			3 (OCH 30312)

(OCH 30412)

M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. www.kvrssgroup.com Third Semester Organic Chemistry Paper IV - ORGANIC REAGENTS, HETEROCYCLIC CHEMISTRY AND NATURAL PRODUCTS (Regulation 2012) Maximum: 70 marks Time: Three hours Answer ALL questions. All questions carry equal marks. UNIT I Explain the functional group transformations of organoboranes. Write a note on the reactions of trialkenyl borates. Orwww.upiqpbank.com Write the preparation and synthetic applications of following organoboranes with suitable examples. 9-BBN Disiamylborane. Write the reactions of organosilanes with α – Bromoketones and α – bromoesters. (6)

		UNIT II
3.	(a)	Write the preparation and synthetic applications of following organosilanes with suitable examples.
		(i) Dimethyl-t-butylsilylchloride
		(ii) Silylenolethers. (8)
	(b)	Write a note on the control of rearrangement of Carboniums ions by silicon. (6)
		Or
4.	(a)	Discuss in detail the synthetic applications of β - silyl carbonyl compounds. (8)
	(b)	How do organosilanes plays a vital role in the protection of functional groups? Explain.
		UNIT III (6)
5.	(a)	What are organocopper reagents, Explain

- 5. (a) What are organocopper reagents. Explain their preparation and synthetic applications in organic synthesis. (8)
 - (b) Write the preparation of π allylnickel complexes with applications. (6)

Or

- 6. (a) What are Organo palledium reagents?

 Explain their preparation and synthetic applications in organic synthesis. (8)
 - (b) Write the reactions of Grignard reagents with Carbonyl Compounds and amines. (6)

UNITIV

- 7. (a) Write the synthesis and reactions of Azitidines and Thiophene. (8)
- (b) Write the synthesis and reactions of Pyrimidine. (6)

Or

- 8. (a) Write the synthesis and reactions of Oxiranes and Iosothiazole. (8)
 - (b) Write the synthesis and reactions of pyraduzine and Indole. (6)

UNIT V

- (a) What are Antibiotics? Explain their classification and write the synthesis of terramycin. (8)
- (b) What are sulphanalamides? Write the preparation of sulfa drugs. (6)

Or

- 10. (a) Discuss the structural elucidation and synthesis of Quinine. (8)
 - (b) Write the synthesis of Quercitin. (6)