I B. Tech II Semester Supplementary Examinations, April/May - 2019

 ELECTRICAL CIRCUITS ANALYSIS-I(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) Find the current $i(t)$ in the circuit shown in figure $1(a)$.
 waveform?
c) A Series REC Circuit has a resonant frequency of $12 \mathrm{k} \not \mathrm{fz}$. If.R=5 R and X_{L} at resonance is 300Ω, then what is the bandwidth of the Circuit.
d) What is a dot rule? How dot convention is followed in mutuall coupled coils?
e) What is duality? Write equivalent dual quantities for R, L, C elements.
f) State maximum power transfer theorem.

PART -B

2. a) State and explain Kirchoff's current law and voltage law with examples.
b) Using source transformation, calculate power dissipated in 10Ω resistor in the (9M) circuit shown in figure 2(b).

Figure 2(b)
3. a) Calculate the form factor for the saw-tooth wave form shown in figure 3(a).

Figure 3 (a)
b) A $230 \mathrm{~V}, 50 \mathrm{~Hz}$ voltage is applied to a coil of $\mathrm{L}=5 \mathrm{mH}$ and $\mathrm{R}=2 \Omega$ in series with a capacitance C. What value must C have so that the p.d across the coil shall be 250V?
4. a) An impedance $Z_{1}=10+j 10 \Omega$ is connected in parallel with another impedance of resistance 85Ω and a variable capacitance connected inseries, Find C such that the circuit is in resonance at 5 Hz .
b) Derive an gxpression for resonant frequency for series RLC Grcuit. Also derive an expression for quality factor.
5. a) State and explain Faraday's law of electromagnetic induction. Also explain statically and dynamically induced emfs.
b) The number of turns in a coil is 250 . When a current of 2 A flows in this coil, the
flux in the coil is 0.3 mWb . When this current is reduced to zero in 2 milliseconds, the voltage in a coil lying in the vicinity of the coil is 63.75 V . If the Coefficient of coupling between the coils is 0.75 , find the self inductances of two coils, mutual inductanceand number of fatms in the second coil.
6. a) Draw the graph of the network, find tie-set schedule and determine loop currents.

Figure 6(a)
b) Define: (i) Graph (ii) Sub-graph (iii) Connected graph (iv) Oriented graph (v) (8M) Planar graph (vi) Path (vii) Tree.
7. a) State and explain the compensation theorem.
b) Determine the maximum power delivered to the load in the circuit shown in figure 7(b).

