I B. Tech II Semester Supplementary Examinations, April/May - 2019 ENGINEERING MECHANICS
 (Com. to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is Compulsory
 3. Answer any THREE Questions from Part-B

PART - A

1. a) Explain the reason for the development of frictional force between the two surfaces in contact.
b) State the conditions of equilibrium for concurrent forces in space.
c) Can Centroid of a volume coincide with the Centroid of its cross-section? Explain.
d) Define radius of gyration for mass moment of inertia.
e) Write the kimematic relations for two rotating rigid bodies in contact.
f) State the Work-Energy principle.

> PART-B
2. a) Two unequal forces acting at a point at an angle of 150° have \% $\frac{\circ}{\text { atesultant, which is }}$ perpendicular tothe smaller force. The larger force is 24 N . Fing the smaller force and the resirtant.
b) Two blocks having weight W_{1} and W_{2} are connected by a string and rest on horizontal planes as shown in figure. If the angle of friction for each
 block is α, find the maghitide piqpbank.com and the direction of the least force P applied to the upper block that will induce sliding.
3. a) A cylinder of weight 300 N is held in equilibrium as shown in figure. Determine the tension in the string $A D$ and reactions at B and C. Given that $A E=750 \mathrm{~mm}$ and $\mathrm{AC}=500 \mathrm{~mm}$. Assume that the surfaces are smooth. Bar AE is massless.

b) Two cylinders A and B of diameters 3 cm and 6 cm , weighing 20 kN and 80 kN respectively, are placed as shown in figure. Assuming all the contact surfaces to be smooth, find the reactions at the walls.

4. a) A wire has been bentinto thekvrsseroup.com shape as shown in figure. Determine the position of the centroid of the wire.
b) Find the cethtre-of gravity of the T-section shown in figure.

5. a) Determine the moment of inertia of the area under the sine curve with equation $y=\operatorname{asin} \frac{\pi x}{b}$, about the $\mathrm{x}-$ axis.

b) Determine the mass moment of inertia of a thin triangular plate of altitude h and mass m about its base.
6. a) A ball is thrown vertically upwards with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ from the top of a building of 30 m height. Determine i) the maximum height reached by the ball, ii) the time taken to reach the maximum height, iii) the velocity of the ball as it crosses the top of the building during its downward journey, iv) the timentakentok vrsseroup.com hit the ground and the corresponding velocity.
b) Two cars, and B,start from rest at the same instant, with car A initially trailing at seme distance behind the car B . The uniform accelerations of the cars A and B respectively $3 \mathrm{~m} / \mathrm{s}^{2}$ and $2 \mathrm{~m} / \mathrm{s}^{2}$. If the car A overtake the car B, when B has moved 200m, i) determine the tine taken to overtake, ii) howfar was the car A behind B initially, iii) determine the speed of each car at that instant.
7. a) Derive work energy method.
b) Write a brief noteon Fixed axis rotation system.

