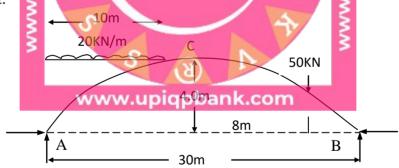
Code No: R1631013

SET - 1

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 STRUCTURAL ANALYSIS – II

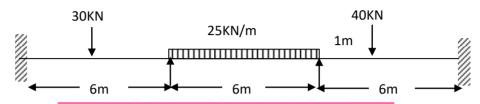
(Civil Engineering)

Time: 3 hours Max. Marks: 70


Note: 1. Question Paper consists of two parts (Part-A and Part-B)

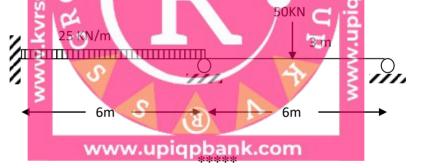
2. Answer **ALL** the question in **Part-A**

3. Answer any FOUR Ouestions from Part-B


3.7 ms wer any 1 o ex Questions from 1 are B				
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		<u>PART –A</u>	(14 N	Marks)
1.	a)	Define and explain Eddy's theorem.		[2M]
	b)	What is Portal frame/www.kvrssgroup.com		[2M]
	c)	What are advantages and limitations of Moment distribution method?		[2M]
	d)	Explain rotation contribution in Kani's method.		[3M]
	e)	Distribution factor at a joint.		[3M]
	f)	Define "Stiffness" of a frame.		[2M]
		0 ×		
		PART-B	(56 Marks)	
2.		Calculate Horizontal thrust, Reactions at supports and Maximum ber	nding	[14M]

2. Calculate Horizontal thrust, Reactions at supports and Maximum bending moment on a parabolic three-hinged arch is loaded as shown in figure. Draw bending moment for the arch and indicate the position of maximum bending moment.




- 3. a) Explain how lateral loads are developed on a structural frame? [4M]
  - b) Explain analysis of a frame subjected to lateral load by adopting Cantilever [10M] method.
- 4. a) Explain situations where the supports in a cable are at different levels. State [4M] position of maximum and minimum tension in a cable with calculations.
  - b) A cable is used to support six equal and equidistant loads over span of 14 m. [10M] The central dip of cable is 1.2 m and loads are 25 KN each. Find the length of the cable required and its sectional area if the safe tensile stress is 150 N/mm².

5. Evaluate the bending moment and shear force diagrams of beam as shown [14M] below by Moment distribution method.



#### www.kvrssgroup.com

- 6. a) Explain procedural steps of analyzing indeterminate structure using Kani's [7M] method.
  - b) Explain significance of stiffness factor and rotation factor in Kani's method of analysis. What are advantages and limitations of Kani's method?
- A two span continuous beam carries loading as shown below. Solve the [14M] problem by stiffness method.



[2M]

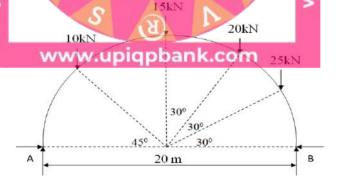
[4M]

# III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 STRUCTURAL ANALYSIS – II

(Civil Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)


- 2. Answer ALL the question in Part-A
- 3. Answer any **FOUR** Questions from **Part-B**

PART –A (14 Marks)

- 1. a) What do you understand by term horizontal thrust?
  - b) What is difference between Arch Action and Beam Action? [2M]
  - c) What is the role of suspension bridge? [2M]
  - d) Explain stiffness factor and distribution factors in Moment distribution [3M] method.
  - e) Explain advantages of Kani's method over Moment distribution method. [3M]
  - f) Explain degrees of freedom of a joint. [2M]

PART -B (56 Marks)


- 2. a) Draw the equilibrium action of a three-hinged arch under action of the [7M] external loads.
  - b) A Two hinged Semi Circular arch of span 20 m is loaded as shown in figure. [7M]
    Determine horizontal thrust and Vertical reactions.



- 3. a) Explain how lateral loads are developed on a structural frame.
  - b) Explain analysis of a frame subjected to lateral load by Adopting portal [10M] method.
- 4. a) Explain different types of cable anchoring methods with neat diagrams. [4M]
  - b) A cable supported on piers 60 m apart at the same level has a central dip of 6 m. Calculate the maximum tension in the cable when it is carrying a load of 30 kN/m. Also determine the vertical pressure on the pier, if the backstay is inclined at an angle of 60⁰ to the vertical when the cable passes over a pulley and the cable passes over saddles.

. . . .

5 Evaluate the bending moment and shear force diagrams of beam in below [14M] figure by Moment distribution method.



6. Analyze continuous beam in figure by Kani's method. [14M]



7. Explain Procedural steps involved in solving a Continuous beam with [14M]



b)

# III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 STRUCTURAL ANALYSIS – II

(Civil Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any FOUR Questions from Part-B

PART-A (14 Marks)

- Define clearly the terms 'Theoretical arch' and 'Actual arch'. 1. a)
- [2M]
- Explain concept in functioning of roller support in suspension bridge. Why do we require analysis of structure for lateral loads? c)
- [2M]

[2M]

How effect of support sinking is accounted in analysis? d)

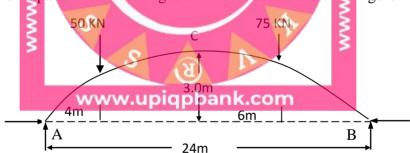
[3M]

Kani's method of analysis is error correction method. Explain e)

[3M]

Explain Flexibility in a structural frame. f)

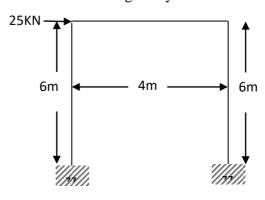
[2M]


PART -B

**(56 Marks)** 

Explain effect of temperature stresses on three hinged arch. 2. a)

[6M]


Calculate Horizontal thrust, Reactions at supports and Maximum bending [8M] b) moment on a parabolic three-hinged arch is loaded as shown in figure.



3. a) Explain procedure for Cantilever method of analysis. [7M]

b) Analyze the Portal frame shown in figure by Portal Method.

[7M]



4. a) With neat sketch list out various features of a suspension bridge.

[7M]

b) A cable is used to support six equal and equidistant loads over span of 14 m. The central dip of cable is 2 m and loads are 25 KN each. Find the length of the cable required and its sectional area if the safe tensile stress is 140 N/mm².

[14M]

5. A continuous beam ABCD is fixed at A and simply supported at B and C, the beam CD is overhanging. The spans AB = 6 m, BC = 6 m and over hanging CD = 2 m. The moment of inertia of the span BC is 2I and that of span AB and CD is 1.5I. The beam is carrying a uniformly distributed load of 25 kN/m over span AB, a point load of 50 kN in BC at a distance of 3 m from B and point load of 15 kN at the free end. Determine the fixing moments at A, B and C adopting Moment distribution method and draw the bending moment diagram.

[14M]

6. Analyze continuous beam in figure by Kani's method.



Derive stiffness matrices for a bar, truss, beam and frame elements [14M] highlighting their degrees of freedom.

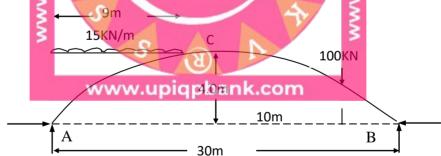
****

**SET - 4** 

# III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 STRUCTURAL ANALYSIS – II

(Civil Engineering)

Time: 3 hours Max. Marks: 70


Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer **ALL** the question in **Part-A** 

3. Answer any **FOUR** Questions from **Part-B** 

**(14 Marks)** 1. Explain advantage of Arch Action over Beam Action. [2M]a) Explain how we account effect of wind on a structural frame. b) [2M] Explain how joint rotations develop and their influence on different types of c) [2M]support. Explain procedure for accounting eccentric loads at joint in analysis. d) [3M] What are Rotation contributions and displacement contributions? e) [3M] Explain Stiffness and flexibility of a system. f) [2M] PART-B **(56 Marks)** Calculate Horizontal thrust, Reactions at supports and Maximum bending

2. [14M] moment on a parabolic three-hinged arch is loaded as shown in figure.



- 3. What are lateral loads? What are inconveniences associated with these lateral a) [7M] loads? Why we adopt approximate methods to analyze a structure with lateral loads?
  - b) List out and explain concepts adopted in analyzing a structure subjected to [7M] lateral loads by an approximate method.
- 4. a) List various parts in a suspension bridge with neat diagram and explain the [4M] loading arrangement.
  - A suspension bridge of 50 m span and 3.5 m wide platform is subjected to a load [10M] b) of 50 KN/m². The bridge is supported by a pair of cables having central dip of 4.5 m. Find the necessary cross sectional area of the cable, if the maximum permissible stress in the cable not to exceed 150 N/mm².

- 5. A continuous beam is built in at A and it is carried over rollers at B and C with spans of AB and BC being 12 m. The beam carries a uniformly distributed load of 25 kN/m over AB and a point load of 60 kN over BC 2.5 m from the support B, which sinks by 20 mm. Values of E and I are 2 x 10⁵ N/mm² and 2x10⁹ mm⁴. Calculate the support moments and draw bending moment diagram giving critical values. Use Moment Distribution method.
- 6. A portal frame ABCD fixed at A and D is loaded as shown in figure. Draw [14M] bending moment diagram for the frame adopting Kani's method.



7. Explain Procedural steps involved in solving a Continuous beam with settlement of supports using Stiffness method of Analysis.

www.upiqpbank.com