Time: Three hours

M.Sc. DEGREE EXAMINATION, MARCH/APRIL 2020.

FOURTH SEMESTER

Physics

Paper II — ANALYTICAL TECHNIQUES

Maximum: 75 marks

PART A — $(5 \times 3 = 15 \text{ marks})$

(No additional sheet will be supplied)

Answer any FIVE questions.

Each question carries 3 marks.

Each answer should not exceed 1 page.

- 1. What are point groups and space groups?
- 2. Differentiate between electron diffraction and neutron diffraction.
- 3. Obtain the resonance condition in ESR.
- 4. Explain briefly: Recoilless emission.
- 5. What is meant by chemical shift? Explain briefly.
- 6. What are the fundamental requirements in NQR?
- Briefly explain about photo electron spectroscopy.
- 8. What is the basic principle in atomic force microscopy?

PART B — $(4 \times 15 = 60 \text{ marks})$

Answer ALL questions.

Each question carries 15 marks.

Each answer should not exceed 6 pages.

9. Explain the experimental method of determination of crystal structure by powder diffraction.

Or

10. What are different crystal systems? Describe the method of construction of reciprocal lattice of a b.c.c structured crystals.

11. Explain the principle of E.S.R. Write the experimental details of E.S.R detection.

 Ω_r

- 12. What is Mossbauer effect? How do you study the Mossbauer effect experimentally?
- 13. Derive the Bloch equations of motion in N.M.R and obtain the expressions for susceptibility.
- 14. What is N.Q.R? Explain the N.Q.R detection using super regenerative oscillator.
- 15. Write in detail about instrumentation involved in X-ray fluorescence spectroscopy.

Or

16. Differentiate between SEM and TEM. Give some applications of SEM.

