M.Sc. DEGREE EXAMINATION, NOVEMBER 2016. THIRD SEMESTER

Mathematics

Paper IV — OPERATION RESEARCH

Time: Three hours

Maximum: 75 marks

(No additional sheet will be supplied)

PART A — $(5 \times 5 = 25 \text{ marks})$

Answer any FIVE questions.

www.kvrssaroup.com

Each question carries 5 marks.

Each answer should not exceed 1 page.

- 1. Explain graphical method.
- 2. Write the use of artificial variables with example.
- 3. Write the dual of the L.P.P:

Minimize
$$z = 4x_1 + 6x_2 + 18x_3$$

Subject to the constraints

$$x_1 + 3x_2 \ge 3$$
, $x_2 + 2x_3 \ge 5$ and $x_1, x_2, \text{ and } x_3 \ge 0$.

- 4. Explain North-West corner method. Upiqpbank.com
- 5. Discuss about Hungarian assignment method.
- 6. Discuss about the travelling salesman problem.
- 7. Write the rules for determining a saddle point.
- 8. Solve the game and determine the value of the game.

 P_2

$$\mathbf{P_1} \begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix}$$

Answer ALL questions.

Each question carries 12½ marks.

Each answer should not exceed 5 pages.

9. Use simplex method to

 $Minimize z = x_2 - 3x_3 + 2x_5$

Subject to the constraints

$$3x_2 - x_3 + 2x_5 \le 7 \; , \quad$$

$$-2x_2 + 4x_3 \le 12,$$

$$-4x_2 + 3x_3 + 8x_5 \le 10,$$

$x_2 \ge 0$, $x_3 \ge 0$ and $x_5 \ge 0$. www.kvrssgroup.com

Or

10. Use penalty method to

Maximize $z = 6x_1 + 4x_2$

Subject to the constraints

$$2x_1 + 3x_2 \le 30$$
, $3x_1 + 2x_2 \le 24$, $x_1, x_2 \ge 3$, $x_1 \ge 0$ and $x_2 \ge 0$.

11. Write down the dual of the LPP and then solve

 $\text{Max } z = 8x_1 + 4x_2$

Subject to the constraints

$$4x_1 + 2x_2 \le 30$$
, $2x_1 + 4x_2 \le 24$, x_1 , $x_2 \ge 0$.

Or

12. Obtain an initial basic feasible solution to the following T.P.

Warehouses	Stores				Availability
	I	II	III	IV	
Α	5	1	3	3	34
В	3	3	5	4	15
Ć	6	4	4	3	12
D	4	-1 .	4	2	19
Requirement	21	25	17	17	80

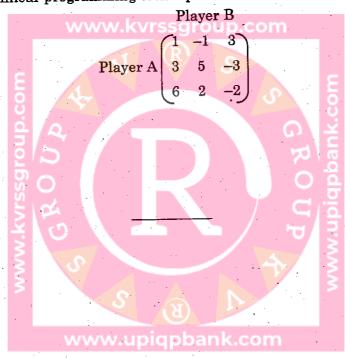
- 13. (a) Explain the differences between a T.P and A.P.
 - (b) Discuss about the dual of the assignment problem.

Or

14. Solve the travelling salesman problem given by the following data:

$$C_{12} = 20$$
, $C_{13} = 4$, $C_{14} = 10$, $C_{23} = 5$, $C_{34} = 6$

$$C_{25}=10$$
 , $\,C_{35}=6$, $\,C_{45}=20$. where $\,C_{ij}=C_{ji}\,.$


and there is no route between cities i and j if a value for C_{ij} is not shown.

15. Solve the game whose payoff matrix is given below:

$$\begin{bmatrix} 9 & 3 & 1 & 8 & 0 \\ 6 & 5 & 4 & 6 & 7 \\ 2 & 4 & 3 & 3 & 8 \\ 5 & 6 & 2 & 2 & 1 \end{bmatrix}$$

 O_1

16. Solve the game by linear programming techniques:

